Copy 5 RM L50L29

RESEARCH MEMORANDUM

SUMMARY OF SPIN AND RECOVERY CHARACTERISTICS OF 12 MODELS

OF FLYING-WING AND UNCONVENTIONAL-TYPE AIRPLANES

By Ralph W. Stone, Jr. and Burton E. Hultz

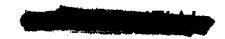
Langley Aeronautical Laboratory CLASSIFICATION Langley Field, Va.

UNCLASSIFIED

By authority of VKN. 123 Effective Pate Dice. 13.195

CLASSIFIED DOCUMENT

This document contains classified information affecting the National Defense of the United States within the meaning of the Esplonage Act, USC 50:31 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.


Information so classified may be impacted only to necessary in the military and navel services of the United

uniormation so classified may be imparted only to persons in the military and naval services of the United States, appropriate civilian officers and employees of the Federal Covernment who have a legitimate interest therein, and to United States citizens of known loyalty and discretion who of necessity must be informed thereof.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

March 1, 1951

DNCLASSIFIED

NACA RM L50L29

Ŧ.

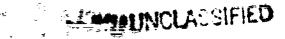
1

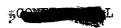
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

SUMMARY OF SPIN AND RECOVERY CHARACTERISTICS OF 12 MODELS

OF FLYING-WING AND UNCONVENTIONAL-TYPE AIRPLANES


By Ralph W. Stone, Jr. and Burton E. Hultz


SUMMARY

A compilation is presented of free-spinning model results of investigations of the spin and recovery characteristics of 12 flying-wing and unconventional-type designs. The results were obtained from dynamic tests in the Langley 15-foot free-spinning tunnel and in the Langley 20-foot free-spinning tunnel which replaced it. Dimensional data, mass data, and three-view drawings of the free-spinning models which correspond to each of the 12 airplane designs are presented. The model test results presented include the spin and recovery characteristics of each model for various combinations of control deflections and for various loadings and dimensional configurations.

. The results of the spin-tunnel investigations indicated that the effects of control setting and control movement on the spin and spinrecovery characteristics of the flying-wing and unconventional-type models were affected by changes in mass distribution in the same manner as for models of conventional configurations. For mass distributed chiefly along the fuselage, aileron-with and elevator-up settings were conducive of the best recovery; whereas elevator-down and aileron-against settings were conducive of the slowest recovery; for mass distributed chiefly along the wings, the converse was true. The influence of mass distribution on the effect of directional controls was dependent not only on the yawing moment produced but also on the accompanying rolling moment if the rolling moment was appreciable. Recovery techniques required were similar to those of conventional configurations except where unconventional-type control surfaces set up unusual moments when moved for recovery. The models generally recovered from inverted spins as readily as from erect spins and it was indicated that wing-tip parachutes are an effective means of terminating spins in an emergency. Although the results were not sufficiently extensive for evaluation in the form of a design criterion for satisfactory recovery, the data presented should help designers of flying-wing and unconventional-type airplanes anticipate probable spin and recovery characteristics.

NACA RM L50L29

INTRODUCTION

The results of investigations of the spin and recovery characteristics of numerous models tested in the Langley 15-foot free-spinning tunnel and the Langley 20-foot free-spinning tunnel during the years 1935 to 1946 have been used to establish empirical criterions for satisfactory spin recovery (references 1 and 2) which are generally applicable to airplanes having mass distributions typical of this time period and which are considered of conventional design (that is, having both horizontal and vertical surfaces at the tail end of the airplane). The results of several designs which may be generally termed unconventional or flyingwing-type configurations were also available and, because of increased interest in unconventional high-speed airplane configurations, it appeared desirable to evaluate these available results to determine criterions for satisfactory spin recovery similar to those evolved for conventional airplanes. Because the flying-wing and unconventional-type designs often utilized unusual and different methods of obtaining directional control, it was not possible to evaluate their spin-recovery characteristics in terms of a vertical-tail design parameter (tail-damping power factor) in the manner used for conventional designs (reference 1). Also, because of rather limited data available for these configurations, an alternate effective parameter could not be developed at this time. Results available for 12 designs of unconventional and flying-wing-type configurations have been summarized, however, and the more important spin and recovery characteristics are presented in this paper.

The effects of mass distribution and center-of-gravity location were determined for many of the models as were the effects of geometric modifications designed in an attempt to improve the spin-recovery characteristics. The investigations included the determination of the effectiveness for spin recovery of several types of controls which are peculiar to flying-wing and unconventional-type airplanes.

The spin and recovery characteristics of each model are presented for the various control configurations, mass distributions, and dimensional configurations tested. Dimensional data, mass data, and a three-view drawing of each of the various free-spinning models are included. The data presented are intended to help designers of unconventional and flying-wing-type airplanes anticipate probable spin and recovery characteristics.

SYMBOLS

b wing span, feet

S wing area, square feet

UNCLASSIFIED

Ċ	mean aerodynamic chord, inches
c'	wing local chord, inches
ж/ē	ratio of distance of center of gravity rearward of leading edge of mean aerodynamic chord to mean aerodynamic chord; positive when center-of-gravity position is rearward of leading edge of c
z/ē	ratio of distance between center of gravity and thrust line or fuselage reference line to length of mean aerodynamic chord; positive when center of gravity is below thrust line
m	mass of airplane, slugs
ρ	air density, slug per cubic foot
μ .	airplane relative density (m/pSb)
I_X , I_Y , I_Z	moments of inertia about X, Y, Z body axes, respectively, slug-feet ²
$\frac{I_{X}-I_{Y}}{mb^{2}}$	inertia yawing-moment parameter
$\frac{I_{Y}-I_{Z}}{mb^{2}}$	inertia rolling-moment parameter
$\frac{I_Z - I_X}{mb^2}$	inertia pitching-moment parameter
α	angle between thrust line or fuselage reference line and vertical, degrees, approximately equal to absolute value of angle of attack at plane of symmetry
ø	angle between span axis and horizontal, degrees; on the charts U or D means inboard wing (right wing in a right spin) up or down, respectively, with relation to the horizontal
v	full-scale true rate of descent, feet per second
Ω	full-scale angular velocity about spin axis, revolutions per second

$^{\delta}\mathbf{r}$	deflection of rudder, degrees
δ _e	deflection of elevator, degrees
ზგ.	deflection of ailerons, degrees
U	elevator up
N	elevator neutral
D	elevator down
ΔC	rolling-moment coefficient due to control deflection (Rolling moment/ $\frac{1}{2}$ pV 2 bS)
Δc_n	yawing-moment coefficient due to control deflection (Yawing moment/ $\frac{1}{2}$ pV 2 bS)

MODELS

The dimensional and mass characteristics of the airplanes simulated by the models are presented in tables I and II, respectively. Three-view drawings of the models are presented in figure 1. The models were constructed as described in reference 3. Briefly, each model was constructed primarily of balsa to be dimensionally similar and was ballasted with lead weights to be dynamically similar to the particular airplane it represented at a given test altitude. A remote-control mechanism was installed in the model to actuate the controls for recovery tests. Sufficient moments were exerted on the control surfaces during recovery tests to move the controls rapidly to the desired positions without regard to the actual forces required to move the controls of the airplane. Parachutes used for spin-recovery parachute tests were of the flat circular type, made of silk, and had drag coefficients of approximately 0.7 based on the surface area of the canopy when spread out flat.

The lateral and longitudinal controls for some of the models presented herein are combined in one pair of control surfaces designated as elevons. Longitudinal control is obtained by deflection of the elevons together and lateral control is obtained by differential deflection of the elevons. In this paper, elevon deflections for longitudinal and lateral control will be referred to, generally, as elevator and aileron deflections, respectively.

Wind Tunnel and Testing Techniques

The model tests were performed in the Langley 15-foot free-spinning tunnel and in the Langley 20-foot free-spinning tunnel which replaced it. The operation of the Langley 15-foot free-spinning tunnel is described in reference 3 and operation of the Langley 20-foot free-spinning tunnel is generally similar. In brief, models are launched with rotation into the vertically rising air stream of the tunnel and the airspeed is varied by the operator until it equals the rate of descent of the model. The model is thus maintained at approximately eye level in the test section. With the model spinning freely, observations of its general behavior are made, and motion-picture records are obtained. Figure 2 shows a typical model spinning in the Langley 20-foot free-spinning tunnel. After observation of the fully developed spin, recoveries are attempted. The turns for recovery are measured from the time the controls are moved to the time the spin rotation ceases.

Spin tests generally are made to determine the spin and recovery characteristics of the model for the normal spinning control configuration (elevator full up, ailerons neutral, and rudder full with the spin) and at various other aileron-elevator combinations including neutral and maximum deflections. The control deflections used were measured perpendicular to the hinge lines. Recoveries are generally attempted by rapid full rudder reversal, although for the investigations presented herein, some recoveries were attempted by other control manipulations which are specifically noted on the charts. For spins which had rates of descent in excess of that which could be readily attained in the tunnel. the rate of descent was recorded as greater than the velocity at the time the model hit the safety net, as >300. For recovery attempts in which the model struck the safety net before recovery could be effected, because of the wandering or oscillatory nature of the spin or because of an unusually high rate of descent, the number of turns from the time the controls were moved to the time the model struck the safety net was recorded. This number indicates that the model required more turns to recover from the spin than shown, as, for example, >3. A >3-turn recovery, however, does not necessarily indicate an improvement over a >7-turn recovery. The symbol ∞ is used on the charts to indicate that recovery required more than 10 turns. For a condition in which the model recovered without movement of the controls after having been launched in a spinning attitude with the controls set for a spin, the result is recorded on the charts as "no spin."

The recovery characteristics of a model have been considered satisfactory if recovery from the spin at the normal spinning control configuration (rudder full with, elevator full up, and ailerons neutral) requires 2 turns or less and if small deviations from this control configuration do not cause recovery to exceed $2\frac{1}{4}$ turns. Small deviations are considered to be those which allow for a variation in the deflection of any given control

UNGLONG FED

setting by as much as one-third from its intended position. This criterion for satisfactory spin recovery has been adopted on the basis of full-scale-airplane spin-recovery data and corresponding model test results (reference 4). The full-scale results available in reference 4 were generally for conventional-type airplanes with horizontal tails, but unless actual full-scale spins of unconventional or flying-wing type airplanes subsequently prove otherwise, it is felt that the criterion for satisfactory recovery specified may be generally applicable to all types of airplane designs. Unpublished observation of airplane motions for some of the unconventional and flying-wing-type configurations presented herein have indicated that the model results give qualitative agreement, at least, with the motions obtained on the airplanes.

The spin-recovery parachute tests were performed in the manner described in reference 5. In brief, recoveries were generally attempted by parachute action alone, the rudder being maintained with the spin. The parachutes were opened by use of a remote-control mechanism.

PRECISION

The results of the free-spinning-tunnel tests presented are believed to be the true values given by the model within the following limits:

α,	deg deg pero													•			•											•	•	•			±1
ø,	deg	•	•			•	•			•	•			•	•	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	٠	<u>[</u>]
٧,	perc	en	ιt	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>-</u> -
Ω,	pero	en	t	•	•	٠	•	•	•	٠	٠	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	٠	٠	٠	T 2
т и.	rne f	יינה"	. 70	60	יסז	re?	·v·																										
	From				_																												
3	From	vi	su	al	. е	st	tin	nat	te	•				•	•	:		•						•				•			•	•	±1

All recoveries presented herein were obtained from motion-picture records expect where otherwise specifically noted on the charts.

The preceding limits may have been exceeded for certain spins in which it was difficult to control the model in the tunnel because of the high rate of descent or because of the wandering or oscillatory nature of the spin. Comparison between model and airplane spin results (reference 4) indicates that spin-tunnel results are not always in complete agreement with airplane results. In general, when the model spun at an angle of attack less than 45° the corresponding airplane spun at a larger angle

- INOTACCIFICO

of attack, and when the model spun at an angle of attack greater than 45°, the corresponding airplane spun at a smaller angle of attack. Generally, the spin at the lower angle of attack (either model or airplane) was associated with the higher rate of descent. The airplane generally spun with its inner wing down more than the inner wing of the corresponding model. The comparison made in reference 4 for 60 different designs indicated that approximately 90 percent of the models satisfactorily predicted full-scale recovery characteristics and that the remaining 10 percent of the models were of some value in predicting details of the full-scale results such as proper recovery technique, aileron effects, and the motion in the developed spin. The designs compared in reference 4 were, in general, for conventional airplanes.

The accuracy of measuring the weight and mass distribution of the models is believed to be within the following limits:

Weight,	percent .			•					•	•	•	•			•		•	±:
Center-	of-gravity	loca	atio	n,	per	cen	t ĉ											±;
	of inertia																	

The controls were set with an accuracy of ±1°.

TEST CONDITIONS

The variations of the mass-distribution parameters for the various loadings investigated for each model are presented in figure 3. Figure 4 shows the variations of the control-surface deflections with stick positions for the models which combined the longitudinal and lateral controls in one control surface. The dimensional modifications tested during the investigations summarized in this paper are presented in figure 5. Figure 6 shows the original rudders tested on models 1 to 4, these rudders are of the drag type and are mounted at the wing tips. The control configurations tested on each specific model for each model configuration are indicated in charts 1 to 14 with the results.

RESULTS AND DISCUSSION

The erect spin and recovery data for the 12 models summarized herein are presented in charts 1 to 12. Inverted spin data and spin-recovery parachute data available for some of the 12 models are presented in

charts 13 and 14, respectively. The results of tests with dimensional modifications on the various models are listed with their indicated effectiveness in table III and in general are presented in the corresponding charts 1 to 12.

Erect Spins

The spin and recovery characteristics of models 1 to 6 (charts 1 to 6) were found to be in general agreement with references 1 and 6 as regards the influence of the mass distribution on the effectiveness of the controls during the spin and the recovery. When the mass of the models was distributed primarily along the wings, for example, aileron settings against the spin (stick left in a right spin) and downelevator settings (stick forward) were generally favorable. For these control settings, steeper spins with more rapid recoveries were generally obtained than were obtained for other control settings. These control settings were also conducive of no-spin conditions. For this mass distribution, reversal of rudders which primarily gave a yawing moment only were ineffective; whereas movement of the elevator down appeared to be the most effective method of obtaining recovery. Such control movement for recovery is consistent with that indicated for conventional airplanes for similar loadings. When the mass of the models was distributed primarily along the fuselage, aileron-with settings and elevatorup settings were generally most effective in causing steep spins from which recovery was most easily obtained. For this mass distribution, movement of the rudder against the spin, when the rudder primarily gave a yawing moment only, generally appeared to be the most effective method of obtaining recovery. These results of control effectiveness are also consistent with those indicated for conventional airplanes for similar loadings (references 1 and 6).

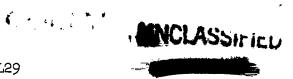
Some exceptions to the general effects of control settings and movements on the spin and recovery were obtained, however. When, for example, model 6 had its loading distributed mainly along the wings (chart 6) full-down elevator and full ailerons against the spin sometimes caused a relatively flat spin from which recovery was unsatisfactory. For this model and other similar models, combination of the longitudinal and lateral controls in a single surface caused unusually large deflections of the surfaces when both full elevator and aileron controls were applied. When the elevator was full down and the ailerons were full against the spin, the inboard control surface (that on the right wing in a right spin) had a large downward deflection; whereas the outboard control surface was nearly neutral. It is believed that this large downward deflection of the inboard control caused unusually large pro-spin yawing moments which overcame the possible favorable effect of the rolling moment due to the aileron-against setting. For loadings for which the mass was distributed primarily along the fuselage, control settings of the elevator

full up and the ailerons full with the spin tended to be similarly detrimental.

Models 1 to 4 (charts 1 to 4) had rudders which did not primarily provide yawing moments only but also provided appreciable rolling moments. The rudders for models 1 to 4 are shown in figure 6. Typical of these rudders are those of models 2 and 3, similar models with different rudders. The rudder of model 2 is a spoiler-like surface which on the airplane protruded downward and forward through the lower surface of the wing; a pitch flap moved upward in conjunction with downward movement of the spoiler surface. On model 3 two split flap-like surfaces, one on the upper surface and one on the lower surface of the wing, were both deflected for rudder movement. For both models, the rudders on the right wing functioned and those on the left wing remained neutral for a right turn. These rudders may generally be termed scoop-type and split-type rudders, respectively.

A comparison of the aerodynamic yawing- and rolling-moment characteristics of the two general types of rudders (measured on the free-flighttunnel balance, described in reference 7) is shown in figure 7. The results indicate that, for angles of attack above 340, setting the rudder against the spin (left rudder pedal forward in a right spin) for the scoop-type rudder produced a rolling-moment increment in the same direction as would be obtained by setting the ailerons against the spin (left stick in a right spin); whereas for the split-type rudder, a rolling-moment increment in the same direction as would be obtained by setting the ailerons with the spin was produced. The yawing moments contributed by both types of rudders were approximately the same. results are consistent with those indicated in reference 6 for conventional designs with loadings with the mass distributed primarily along the wings in that rolling moments caused by aileron-against settings were favorable and rolling moments caused by aileron-with settings were unfavorable to spin recovery. Thus for wing-heavy loadings, the scooptype rudders when moved against the spin gave favorable rolling moments for spin recovery and the split-type rudders when moved against the spin produced unfavorable rolling moments. Conversely, it was indicated that maintaining the split-type rudders with the spin was favorable for spin recovery; whereas maintaining the scoop-type rudders with the spin was unfavorable. As is further indicated in reference 6, for loadings in which the mass is distributed primarily along the fuselage, aileron-with settings are favorable. It appears probable that, for designs with the loading primarily along the fuselage, scoop-type rudders when set against the spin would have produced unfavorable rolling moments for spin recovery; whereas split-type rudders would have produced favorable rolling moments.

Models 5 and 6 had rudder control surfaces that primarily provided a yawing moment only. Model 5 had dual rudders and model 6 was tested both with single and dual rudders. For models 5 and 6 (charts 5 and 6),


when the mass distribution was primarily along the fuselage, rudder reversal was generally effective in producing recovery; whereas for model 6, rudder reversal was ineffective in producing recovery when the mass distribution was primarily along the wings. These results are in accord with the results of reference 1 for conventional airplane designs. Thus rudders which primarily provided yawing moment only appear to be similarly effective in producing recovery for airplanes of the flyingwing type as for airplanes of conventional designs, depending primarily on mass distribution. It has been noted for one model (model 6) that single or dual vertical tails appeared equally as effective provided they had equivalent vertical-tail volume (reference 8).

was very heavily distributed along the fuselage. The results of an extensive investigation on model 7 (reference 9) indicate that spins may not be obtained for values of the inertia yawing-moment parameter $(I_X - I_Y/mb^2)$ between approximately -450 \times 10⁻⁴ to -750 \times 10⁻⁴ and that flat spins will generally be obtained for larger or smaller values of the inertia yawing-moment parameter. Reversal of the rudder was generally ineffective in stopping the spin rotation except when sufficiently large dual vertical tails and rudders were used (reference 9). These large vertical tails are shown in figure 5 and the results are noted in table III. Movement of the ailerons with the spin, however, was generally effective for terminating the spin rotation. This effect is in agreement with the results obtained during an extensive investigation on a sweptwing model having a horizontal tail. This model was tested at fuselage heavy mass distributions (reference 10) beyond the mass range of references 1 and 6. For all loading conditions tested on model 7 after spin rotation had ceased, the model tended to glide at a flat attitude (very high angle of attack) decreasing its angle of attack relatively slowly except when the elevator was full down.

Model 7 had a delta-wing plan form and a loading for which the weight

Model 8 had a sweptforward wing and generally tended to spin flat with a wide radius, very slow rotation, and large oscillations in roll, pitch, and yaw (chart 8). Rudder reversal generally stopped the rotation but the model tended to glide at very large angles of attack above the stall and the oscillations continued after the rotation ceased. When the elevator was reversed to full down following rudder reversal, however, the model tended to dive after the spin rotation ceased. Unpublished full-scale results on this design indicated that accurately timed movement of the stick forward during the oscillations was required to regain unstalled flight. The results of an extensive investigation of modifications to this design and a brief comparison with flying-wing types with sweptback wings indicate that major modifications would be needed to improve the characteristics of this design and that in this instance the sweptforward wing appeared to cause the unsatisfactory trim characteristics. Installation of a large horizontal tail and increased

vertical-tail length made the model's trim and spin characteristics satisfactory. The results with the horizontal tail installed are noted in table III and the modification is shown in figure 5.

Models 9 and 10 were similar designs having approximately circular plan form, dual vertical tails mounted on the upper surface of the wing. and horizontal surfaces with control surfaces extending from the nearly circular plan form for longitudinal and lateral control. The spin and recovery characteristics of model 9 (chart 9) were not appreciably affected by changes in mass distribution for the range of values of inertia yawing-moment parameter tested $(I_X - I_y/mb^2)$ from -208 x 10⁻¹⁴ to 590×10^{-4}). Increasing the relative density for model 9, however, had an adverse effect upon spin recovery. The results for the largest relative density for model 9 and the results for model 10 (chart 10) which were for a similarly large relative density, indicated poor recovery characteristics. Satisfactory spin recoveries were obtained for model 9 by a special technique for which the leading edges of the horizontal surfaces were moved down and the stick was held back and moved against the spin (left in a right spin) while the rudder was reversed. Satisfactory recoveries were obtained on model 10 only with the installation of modifications and following a recovery technique in which the stick was held full back and moved against the spin while the rudder was reversed. a technique similar to that used for model 9. The satisfactory modifications used for model 10 were a supplementary vertical tail (supplementary tail 2, fig. 5(g)) behind the trailing edge, a large semispan spoiler (spoiler no. 4, fig. 5(g)) beneath the outer wing in a spin (left wing in a right spin), or two large vertical fins (vertical fin 7, fig. 5(g)) mounted on the horizontal control surfaces.

Models 11 and 12 were tail-first or canard-type designs. The spinning characteristics of these models (charts 11 and 12) were not affected by small variations in mass distribution or by small movements of the center of gravity. After recovery from the spin, model 11 trimmed at a high angle of attack (approx. 80°) even when the elevator was set to simulate a stick position of full forward. Modifications which caused model 11 to trim in a normal flight attitude after the spinning rotation had been stopped were the addition of large fillets or drooping enlarged ailerons 220. Prior to spin tests, model 12 was designed so that it would not trim at high angles of attack by installing a large elevator with increased deflections over those of model 11, and by installing large wingtip trimmers. The configuration for model 12 with these changes is shown in figure l(1). Satisfactory spin recoveries in which the model recovered in a dive were obtained for model 12 by application of full rudder reversal when the elevator was set to simulate a stick position of full forward.

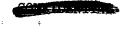
NACA RM L50L29

Inverted Spins

Inverted spin and recovery characteristics were available for 10 of the 12 models presented herein. These results are presented in chart 13. A brief analysis of the results based on reference 11, a summary of inverted spin results, is presented.

When the ailerons were set with the spin, for the fully developed inverted spins presented, the ailerons were set to simulate a stick position to the pilot's left when spinning to the pilot's right with the rudder to the pilot's right (controls crossed). When the ailerons were set against the inverted spin, the controls were together. Elevator-up simulated stick forward and elevator-down simulated stick back. In chart 13, the angle of wing tilt is given as up or down relative to the ground.

Model 1 would spin inverted only when the ailerons were neutral or with the spin. Recoveries from these spins were generally unsatisfactory. The inverted spin results were generally similar to those for erect spins. This is probably an indication that exposed area which tended to damp the rotation was approximately the same for both erect and inverted spins.


Model 2 would spin inverted only when the ailerons were with the spin with the stick neutral or forward longitudinally. The inverted spin characteristics were considered somewhat improved over the erect spin characteristics in that spins were obtained for fewer control settings (that is, more no-spin conditions were obtained).

Model 4 would generally not spin inverted when the rudders were set with the spin (right rudder pedal forward in an inverted spin to the pilot's right); whereas it did spin erect. Model 4, however, would spin inverted, when the rudders were set against the spin (data not presented).

Model 5 would spin inverted for most control configurations; recovery by rudder reversal was, however, satisfactory. These results are somewhat better than those obtained erect, probably because more vertical fin and rudder area were unshielded in the inverted spin than in the erect spin.

Model 6 would spin inverted only with ailerons and rudder with the spin. Satisfactory recoveries were obtained by neutralizing all of the controls.

Model 7 would spin inverted for a loading condition for which it would not spin erect. The model spun inverted, however, only when the ailerons were against the spin and the stick was neutral or forward longitudinally. The rudder of this model was above the wing and shielded in erect spins. whereas it was relatively unshielded in inverted spins. Thus for this

TANGENSSIFIED

design it appears that in an erect attitude the rudder which was shielded did not supply sufficient pro-spin yawing moment to cause the model to rotate; whereas in an inverted attitude the pro-spin yawing moment of the unshielded rudder was apparently sufficient to cause the model to spin. Satisfactory recovery by rapid rudder reversal was obtained and it appears that, on a corresponding airplane, neutralization of the stick laterally and longitudinally also would be desirable.

Model 8 would generally not spin inverted but tended to become erect and, as in the case of erect spins, tended to remain at a flat erect attitude. The vertical fin and rudder of this design, which had a relatively large aspect ratio and was mounted well above the fuselage center line, was unshielded in the inverted attitudes and may have contributed a rolling moment which caused the model to roll erect following launching into the tunnel inverted.

Model 10 had inverted spins which were similar to the erect spins, recoveries from which were unsatisfactory.

Models 11 and 12 would spin inverted generally when the ailerons were neutral or with the spin. Reversal of the rudder caused the spinning rotation to stop quickly for both models. Model 11 remained in an inverted stalled attitude after the rotation had ceased, for all elevator settings. Model 12, however, dived into a normal flight attitude when the elevator was set to cause a nose-down pitching moment from the inverted attitude. These results are similar to those for erect spins.

The results of the inverted spin tests of the various models are in general accord with inverted spin and recovery results for conventional designs as indicated in reference 11, in that rearward movement of the stick, and alleron-against settings generally tended to be beneficial.

Spin-Recovery Parachutes

The results of investigations made to determine the effect of spin-recovery parachutes were available for six of the models. The results (chart 14) indicate that, in general, parachutes attached to the outer wing tip in a spin (left wing in a right spin) will generally cause satisfactory spin recovery by parachute action alone for emergency purposes. The primary disadvantage of wing-tip spin-recovery parachutes is the danger of opening the parachute on the inboard wing tip (right tip in a right spin) rather than the outboard wing tip. Under such circumstances, the spin may be flattened and recovery made impossible. The results of tests for conventional designs (reference 12) and for one model reported herein indicated that use of parachutes on both wing tips when opened simultaneously required parachutes of approximately twice the diameter of a single wing-tip parachute used only on the outer wing tip.

Opening two parachutes simultaneously has the advantage of eliminating the danger of opening the wrong wing-tip parachute. The experimental results indicated that a towline length equal to approximately the semispan of the wing should be used.

Model 8 was tested only with a parachute attached to the tail cone for which satisfactory recoveries were obtained. On model 10 a single wing-tip parachute, required for satisfactory recovery, was excessively large but satisfactory recoveries were obtained by simultaneously opening moderate sized tail and wing-tip parachutes. The tail parachute was mounted on the arresting gear mast shown in figure 8.

Reference 12 presents a method whereby the size wing-tip parachute required for satisfactory spin recovery may be calculated. As is indicated in reference 12, calculations by this method correlate satisfactorily with experimental data for flying-wing-type configurations.

CONCLUSIONS

Based on the spin and recovery characteristics of models of 12 flying-wing and unconventional-type designs investigated in the Langley 15-foot free-spinning tunnel and the Langley 20-foot free-spinning tunnel, the following conclusions are made.

- 1. The effect of aileron and elevator control settings on spin and recovery characteristics was generally dependent upon mass distribution in the same manner as for conventional configurations: that is, for mass distributed chiefly along the fuselage, aileron-with and elevator-up settings were conducive of the best recovery, whereas elevator-down and aileron-against settings were conducive of the slowest recovery; for mass distributed chiefly along the wings, the converse was true. The influence of mass distribution on the effect of directional controls was dependent not only on the yawing moment produced but also on the accompanying rolling moment if the rolling moment was appreciable.
- 2. Recovery from inverted spins generally was obtained as readily as from erect spins. It appears that the most rapid recoveries from inverted spins would have been obtained by movement of the stick back longitudinally and against the spin laterally and of the rudder against the spin.
- 3. A single wing-tip parachute on the outer wing tip in a spin generally was an effective spin-recovery device for emergency recovery of unconventional and flying-wing-type designs.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

REFERENCES

- 1. Neihouse, Anshal I., Lichtenstein, Jacob H., and Pepoon, Philip W.: Tail-Design Requirements for Satisfactory Spin Recovery. NACA TN 1045, 1946.
- 2. Neihouse, A. I.: Tail-Design Requirements for Satisfactory Spin Recovery for Personal-Owner-Type Light Airplanes. NACA TN 1329, 1947.
- 3. Zimmerman, C. H.: Preliminary Tests in the NACA Free-Spinning Wind Tunnel. NACA Rep. 557, 1936.
- 4. Berman, Theodore: Comparison of Model and Full-Scale Spin Test Results for 60 Airplane Designs. NACA TN 2134, 1950.
- 5. Kamm, Robert W., and Malvestuto, Frank S., Jr.: Comparison of Tail and Wing-Tip Spin-Recovery Parachutes as Determined by Tests in the Langley 20-Foot Free-Spinning Tunnel. NACA ARR L5G19a, 1946.
- 6. Neihouse, A. I.: A Mass-Distribution Criterion for Predicting the Effect of Control Manipulation on the Recovery from a Spin. NACA ARR, Aug. 1942.
- 7. Shortal, Joseph A., and Draper, John W.: Free-Flight-Tunnel Investigation of the Effect of the Fuselage Length and the Aspect Ratio and Size of the Vertical Tail on Lateral Stability and Control. NACA ARR 3D17, 1943.
- 8. Gale, Lawrence J., and Pumphrey, Norman E.: Spin and Recovery Characteristics of a Model of a Fighter Type Airplane without a Horizontal Tail and Having a Single Vertical Tail or Twin Vertical Tails. NACA RM L50Fl9a, 1950.
- 9. Klinar, Walter J., and Jones, Ira P., Jr.: Spin-Tunnel Investigation of a Model of a 60° Delta-Wing Airplane to Determine the Spin, Recovery, and Longitudinal Trim Characteristics throughout an Extensive Range of Mass Loadings. NACA RM L9L06, 1950.
- 10. Berman, Theodore: Spin-Tunnel Investigation of a Model of a Swept-Wing Fighter Airplane over a Wide Range of Fuselage-Heavy Loadings. NACA RM L50L08, 1950.
- 11. MacDougall, George F., Jr.: Tests of Inverted Spins in the NACA Free-Spinning Tunnels. NACA ARR Dec. 1943.
- 12. Malvestuto, Frank S., Jr.: Method of Estimating the Minimum Size of a Tail or Wing-Tip Parachute for Emergency Spin Recovery of an Airplane.

 NACA RM L8D27, 1948.

TABLE I'- DIMENSIONAL CHARACTERISTICS OF MODELS TESTED [Model values are presented in terms of corresponding simplane values.]

Model	1	2	3	4	5	6	7	8	9	10	ш	12
Model scale	1/16	1/20	1/57.33	1/16	1/17.54	1/20	1/20	1/17.8	1/16	1/16	1/16	1/16.95
Over-all length, ft	23.58	17.78	50.90	14.25	36.44	20.45	41.37	29.40	26.64	28.13	27.40	29.58
Wing:				•	·	·:						,,,,,
Span, ft	40.59	60.00	172.00	39.00	38.67	26.83	29.42	54.0	23.33	23.33	36.98	40.57
Area, sq ft	309.32 .	490.0	4020.0	293.31	496.00	200.00	375.0	356.0	427.5	427.0	191.0	208.3
Aspect ratio	5.33	7.36	7.36	5.19	3.01	3.60	2.31	8.20	1.27	1.27	7,00	7.91
Root chord, in.	148.48	157.00	450.00	141.65	194.00	123.00	305.80	116.40	280.16	280.16	92.00	92.00
Tip chord, in.	24.80	39.00	175.00	35.92	116.00	4.28	0	\$4.00			35-50	33.55
Taper ratio	0.167	0.248	0.249	0.253	0.600	0.420	0	0.376			0.386	0.364
M.A.C., (č), in.	103.04	109.80	315.00	102.33	157.0	93.68	203.89	85.82	238.00	238.00	67.71	67.69
L.E. c resrward L.E. root chord	53.28	69.70	200.00	49.30	83.56	62.48	101.91	-30.00	10.5	10.02	57.0	61.08
Twist, deg	3.0	4.0	4.0	0	٥		0	0	0	0	2.0 to -0.25	3.0 to, -0.5
Dibedral, deg	Tip -43.0 Center 8.0	2.0	2.0	1.0	0	0	0	2.0	0	0	4.5	4.5
Sweepback, deg	29.3 LEW	21.9 c/4	25.8 LEW	27.8 LEW	35 c/4	38.1 c/4	60 IEW	-15 c/4	0 c/¥	0 c/¥	26.5 c/4	28.8 c/¥
Airfoil section, root	MACA 66,2-018	MACA 65,3-019	NACA 65,3-019	MACA 66,2-018	CVA 4-(00) -(12)(40) -(1.1)(1.0)	NACA 0010-64 (normal to 40-percent chord line)	MACA 65 ₍₀₆₎ -006.5	KACA 23018	MACA 0016	RACA 0016	C-W 6500-0015	C-W 6500-0015
Airfoil section, tip	BACA 66,2x-012	MACA 65,3-018	MACA 65,3-018	FACA 66,2-018	CVA 1-(00) -(12)(10) -(1.1)(1.0)	do	MACA 65(06) -006.5	NACA 23012	raca colé	KACA 0016	C-W 6500-0015	C-¥ 6500-0015
Horizontal tail:		•										
Span, percent b/2	Rone	None	Kone	None	None	None	None	None	64.90	80.35	¥¥.60	55.20
Area, sq ft	do	do	do	do	do	da	do	do	46.0	48.0	15.56	21.52
Longitudinal control:								}				
Туре	Elevons	Elevons	Elevons	Blevons	Elevons	Elevons	Elevons	Elevator	Elevons	Elevons	Elevator	Blevator [®]
Area, sq ft	36.06	31.85	273.36	32.67	54.40	16.98	33.30	36.31	25.00	47.99	15.56	18.62
Distance to c.g.,	5.76	4.55	16.85	5.03	12.76		10.53	5.42	10.42	11.45	15.73	16.05
Vertical tail:												,
Area, sq ft	31.82	0	٥	37-15	122.40	20,10	67.00	43.50	28.30	28.42	25.20	27.80
Rudders;												
Туре	Frise	Drag	Dreg	Drag	Conventional	Conventional	Conventional	Conventional	Conventional	Conventional	Conventional	Conventional
Area, sq ft	°13.88	^C 14.63	¢120.00	^c 21.68	^c 32.00	4.10	13.40	19.40	^c 13.20	^с ц. 2 6	°11.44	c _{13.00}
Dist. to e.g.,	7.18	7.68	22.05	5.65	15.15	9-33	11.86	12,31	15.00	12.53	5.00	7-92
ateral control:								,				
Туре	Elevons	Elevons	Elevons	Elevonsd	Elevons	Elevons	Rlevons	Conventional	Elevons	Elevons	Conventional	Conventional
Span, percent b/2	56.66	33.67	40.00	58.30	47.20	45.40	72.15	52.85	64.90	80.35	38.01	39.11
Area, sq ft	36.06	31.85	273.36	32.67	54.40	16.98	33-30	31.60	25.00	47.99	13.20	15.16
derimum control deflections:												
Right 5r, deg upe	90	[‡] 26	60	45	25 R	30	- 30 R	25 R	30 R	25 R	30 R	¥0 R
Right 8r, deg down	20	69	60	45	25 L	30	30 L	25 L	30 L	25 L	30 L	12 L
Left å _r , deg up ^e	90	f ₂₆	60	45	25 R	30			30 R	25 R		11 R
Left 8 _r , deg down ^e	20	69	60	45	25 L	30			30 L	25 L		40 L
δ _e , deg up ^e	30	24	20	€10.5, b21	30	50	20	30	15	45	30	60
δ _e , deg dovn [€]	20	n		810.5, b7	20	10	20	20	15	15	15	60
åg, deg up ^e	30	17		810.5, b10	15	15	15	20	30	10	20	38
Sar deg down ^e	15	13		\$10.5, ¹ 10	15	15	15	15	30	10	14 1/2	9
~	_~_	7				~	-/	_ ~	,,,	~~		

All movable elevator.

^bDistances measured regressed to midpoint of control hinge line.

Area of both rudders.

*Area or note remarks.

Elevan balancers were used in conjunction with elevan, deflections \$200 (140 up and \$40 down revised).

Deflections measured from chord plane and perpendicular to hinge line.

Deflection of pitch flap which moved up in conjunction with downward movement of drag rudder.

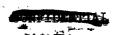
Soriginal deflections

Bevised deflections.

TABLE II. - MASS CHARACTERISTICS OF MODELS TESTED [Model values are presented in terms of full-scale values]

	Majabt	grav	er-of- vity	aiı	Lative plane sity, µ		nts of in slug-feet		Ma	ass paramete	rs	
Loading	Weight (1bs)	x/ē	z/č	Sea level	Test altitude	I X	ΙΥ	IZ	$\frac{I_X - I_Y}{mb^2}$	$\frac{I_{Y} - I_{Z}}{mb^{2}}$	$\frac{I_{Z}-I_{X}}{mb^{2}}$	Remarks
	· · · · · · · · · · · · · · · · · · ·						Мос	lel l				
A	10,194	0.128	-0.003	10.59	12.62	9,313	6,834	15,635	48 × 10 ⁻⁴	-169 × 10 ⁻¹⁴	121 × 10 ^{-l}	Loading primarily along wings
В	10,194	.128	003	10.59	12.62	7,264	6,834	13,586	8	-129	121	Do.
C -	10,194	128	003	10.59	12.62	11,828	6,834	18,150	96	-217	121	Do.
ם	10,194	.128	003	10.59	12.62	9,313	5,604	14,405	71	-169	98	Do.
E	10,194	.128	003	10.59	12.62	9,313	9,226	18,027	2	-169	167	Do.
F	10,194	.188	003	10.59	12.62	9,313	6,834	15,635	48	-169	121	Do.
G	10,194	.078	003	10.59	12.62	9,313	6,834	15,635	48	-169	121	Do.
H	9,755	.179	023	10.14	12.01	8,417	12,417	20,667	-80	-165	245	Loading primarily along fuselage
							Mod	del 2				
A	6,526	0.290	-0.040	2.91	4.62	19,138	2,274		231 × 10 ⁻⁴	-260 × 10 ⁻⁴	29 × 10 ⁻¹	Loading primarily along wings
В	6,526	.290	040	2.91	4.62	22,951	2,274	25,111		-312	29	Do.
С	6,526	.290	040	2.91	4.62	19,138	1,999	21,023	235	-261	26	Do.
D	6,768	.290	040	3.01	4.78	19,132	2,967	21,997		-251	37	Do.
E	6,694	.240	040	2.98	4.73	19,132	2,679	21,709		-254	33	Do.
F	6,675	.320	040	2.96	4.71	19,132	2,059	21,089		-255	26	Do.
G.	6,538	.350	040	2.91	4.62 4.89	19,132	1,729	20,758 21,949	· · · · · · · · · · · · · · · · · · ·	-260 -246	22 36	Do.
H	6,914	.250	040	3.08	4.09	19,131	2,919		210	-240	30	
ļ	· · · · · ·					<u> </u>		del 3		le		Loading primarily
A	155,000	0.275	-0.014	2.93	5.50		-		207 × 10 ⁻¹⁴	-234 × 10 ⁻⁴		STOUR MILER
B	155,000	.275	014	2.93	5.50			3,899,050		-234	36	Do.
C -	155,000	•333	014	2.93	, 5.50			3,769,000		-234	27	Do.
D	155,000	.391	014	2.93	5.50			3,769,000		-234	27	Do.
E	155,000	.200	014	2.93	5.50	3,380,000	<u> </u>	3,769,000	207	-234	27	Do.
	1. (1.0				0.10	C 251		iel 4	1000 v = 2 = 1	-280 × 10 ⁻¹	F0 + 20=14	Loading primarily
A B	4,642 4.642	0.251 .383	0.049	5.29 5.29	8.42	6,074 6,074	1,030	7,102	230 × 10 ⁻⁴	-280 X 10-1	50 X 10	Loading primarily along wings
c	4,642	.184	.049	5.29	8.42	6,074	1,030	7,102		-280	50	Do.
D	13,291	.268	.011	15.18	24.14	19,151	1,925	20,902	_	-297	27	Do.
E	9,000	.268	.011	10.29	16.36	9,590	1,520	11,120		-226	37	Do.
	,,,,,,,,,	00				1 ,,,,,		del 5	1 -7		L <u></u>	
A	14,517	0.167	0.004	9.89	15.72	13,250	22,943		-144 × 10 ⁻⁴	-179 × 10 ⁻⁴	323 × 10 ⁻¹	Loading primarily along fuselage
В	14,485	.240	.003	9.87	15.68	13,338	23,618	35,994	-153	-184	337	Do.
c	14,485	.163	.003			13,338				-184	245	Do.
				<u> </u>		1,23		iel 6				· · · · · · · · · · · · · · · · · · ·
A	6,815	0.199	0.035	16.59	23.36	3,910	2,749	6,534		-249 × 10 ⁻⁴	173 × 10 ⁻⁴	Loading primarily along wings
В	6,260	.178	.038	15,23	24.21	3,050	2,694	5,616	25	-208	183	Do.
c	5,820	.159		14.18		2,360	2,640	4,821	-22	-168	190	Loading primarily along fuselage
D	6,815	.199	.035	16.59	23.36	2,381	3,787	6,041	-92	-148	240	Do

UNCLASSIFIED



NACA RM L50L29

TABLE II.- MASS CHARACTERISTICS OF MODELS TESTED - Concluded

Loading	Weight	gra	er-of- vity ation	a.i:	lative rplane sity, μ		ts of i lug-fee)	lass paramete	rs	Remarks
	(lbs)	x/ē	z/c	Sea level	Test altitude	ī	ī ^X	īz	IX - IX	$\frac{\mathbf{I}_{\underline{Y}} - \mathbf{I}_{\underline{Z}}}{\mathbf{mb}^{\underline{Z}}}$	$\frac{I_Z - I_X}{nb^2}$	
								Model	7			
. A	11,648	0.240	0.014	13.80	21.93	3,989	27,619	29,557	-754 × 10 ⁻⁴	-62 × 10 ⁻⁴	816 × 10 ⁻⁴	Loading primarily along fuselage
B	11,598	.241	.002	18.10	28.79	4,713	27,078	30,560	-1192	-186	1378	Do.
		·				<u></u>		Model	8			
A	3,846	0.140	-0.052	2.61	4.13	5,084	4,369	9,365	51 × 10- _j	-144 × 10 ⁻⁴	123 × 10 ⁻⁴	Loading primarily along wings
В	3,507	.120	035	2.38	3-79	4,789	4,275	9,096	16	-152	136	Do.
C	3,890	.140	052	2.65	4.20	4,060	4,369	8,340	-9	-115	124	Loading primarily along fuselage
D	4,004	•1 ⁴ 0	052	2.71	4.30	5,941	4,369	10,222	43	-161	118	Loading primarily along wings
E	3,846	.190	052	2.61	4.13	5,084	3,844	8,840	36	-144	108	Do.
F	3,846	.090	052	2.61	4.13	5,084	4,864	9,860	6	-7 ₄₇ t	138	Do.
9	7,886	.140	010	5.35	8.51	5,664	4,738	10,204	13	-77	64	Do.
H	7,547	.120	023	5.11	8.13	5,384	4,655	9,930	10	-77	67	Do.
I	7,886	.090	010	5.35	8.51	5,664	5,738	11,203	1	-77	78	
	r							Model				
A	4,615	0.225	0.006	6.05	8.19	8,090	4,915	12,780	405 × 10 ⁻⁴	-1006 × 10 ⁻⁴	601 × 10 ⁻¹	Loading primarily along wings
В	5,287	.225	.006	6.92	9.36	10,193	4,915	14,883	590	-1115	525	Do.
С	4,615	.225	.006	6.05	8.19	4,126	5,750	9,651	-208	-500	708	Loading primarily along fuselage
D	4,615	.250	.006	6.05	8.19	4,126	5,750	9,651	-208	-500	708	Do.
E	4,615	.200	.006	6.05	8.19	4,126	5,750	9,651	-208	-500	708	Do.
F	6,283	.225	.006	8.24	11.16	8,053	4,765	12,056	309	-686	377	Loading primarily along wings
G	6,947	.225	.006	9.09	12.30	10,122	4,765	14,243	456	-807	351	Do.
н	7,320	.225	.006	9.58	12.96	8,053	10,578	17,527	-204	- 563	767	Loading primarily along fuselage
1	11,890	.218	.017	15.59	21.11	17,178	6,900	23,571	511	-803	281	Loading primarily along wings
								Model	10			
A	16,850	0.263	0.005	22.1	35.1	18,296	15,367	33,703	103 × 10 ⁻¹	-646 × 10 ⁻⁴	543 × 10 ⁻⁴	Loading primarily along wings
								Model	11			
A	3,241	0.120	0.182	6.07	8.22	1,409	4,062	5,041	-197 × 10 ⁻⁴	-72 × 10 ⁻⁴	269 × 10-4	Loading primarily along fuselage
В	3,241	.120	.182	6.07	8.22	1,973	4,062	5,605	-155	-114	269	Do.
C	3,241	.120	.182	6.07	8.22	1,409	3,453	4,432	-151	-73	224	Do.
D	3,241	.120	.182	6.07	8.22	1,409	5,687	6,666	-317	-72	389	Do.
E	3,241	.220	.182	6.07	8.22			5,041		-72	269	Do.
F	3,241	.070	.182	6.07	8.22	1,409	4,062	5,041	-197	-72	269	Do.
G-	3,241		.182		8.22	1,409	4,062		-197	-72	269	Do.
H	3,241	a 37	.182	6.07	8.22	1,409	4,062			-72	269	Do.
								Model				Yangi ma mada in
A	7,717	0.118	-0.019	11.52	15.61	4,120	10,896	14,712	-168 × 10 ⁻¹	-95 × 10 ⁻⁴	263 × 10 ⁻¹	Loading primarily along fuselage
В	7,906		008		15.99			17,184		-116	230	Do.
C	7,851	.109	008		15.88			14,270	-68	-123	191	Do.
D	7,811	.048	012		15.80			17,718	-186	-124	310	Do.
B	7,835	.202	016	11.70	15.84	4,542	9,860	14,255	-130	-107	237	Do.

^aForward of leading edge of M.A.C.



NACA

TABLE III.- MODIFICATIONS TESTED ON MODELS

	Modificati	on made to		Effect on spin	Modifica-	Data
Wing	Wing-tip rudders	Vertical fin	Other part	characteristics	in figure	in chart
		Model 1	·		·	
	Split rudder			Detrimental	5(a)	1
,		Model 2		· · ·		
			Equivalent propeller fin area added	Slightly detrimental	5(b)	2 .
20-percent semispan slats				Detrimental	5(b)	2
35-percent semispan slats				do	5(b)	.5
		Horizontal area		Ineffective	5(b)	2
		Model 4				
40-percent semispan slats				Slightly detrimental	5(c)	4
25-percent semispan slats				Ineffective	5(c)	4
60-percent semispan slats				Detrimental	5(c)	4
25-percent semispan aux- iliary airfoil				Slightly detrimental	5(c)	4
25-percent semispan slats		Vertical fins removed		Detrimental	5(c)	4
25-percent semispan slats	Neutral '	Surface made movable aft of 50-percent- chord line		Beneficial	5(c)	4
25-percent semispan slats	Neutral	Surface made movable aft of 50-percent- chord line plus area A		Very beneficial	5(c)	h
25-percent semispan slats	Neutral; Area B added to trailing edge of wing	Surface made movable aft of 50-percent- chord line		Beneficial	5(c)	4
25-percent semispan slats	Area C added, coubling chord of rudders			Somewhat beneficial	5(c)	14
25-percent semispan slats	Area C added and hinge line moved to trailing edge of wing			Beneficial	5(c)	4
25-percent semispan slats	Area D added and hinge line moved to trailing edge of wing			Very beneficial	5(c)	4
Area F added	Neutral	made movable aft of	1	Beneficial	5(c)	14
	Neutral	Fins moved outboard; area E added; area G used as rudders		Beneficial	5(e)	Not presente
		Model 5	· · ·			
55.4-percent semispan slats				Slightly detrimental	1(e)	5
		Model 6				
		Single vertical tail moved rearward 1.7 inches		Ineffective for loading A, beneficial for loading D	5(a)	6
		Dual vertical tails added with same tail volume as original single vertical tail	***************************************		5(d)	6
		Dual vertical tails moved rearward 1.0 inch to have same tail volume as mod. A		Ineffective for loading A, beneficial for loading D	5(d)	6
		Model 7	·	·	'	·
		MOUEL (
Wing fillets added			***************************************	Detrimental	1(g)	7
		Dual vertical tails		Detrimental Ineffective	1(g) 1(g)	7
	20-percent semispan slats 35-percent semispan slats 60-percent semispan slats 55-percent semispan slats 25-percent semispa	20-percent semispan slats 35-percent semispan slats 25-percent semispan slats 37-percent semispan slats 38-percent semispan slats 38-percent semispan slats 39-percent semispa	Split rudder Model 2 20-percent semispan slats 35-percent semispan slats 25-percent semispan slats 60-percent semispan slats 25-percent semispan slats Area B added to trailing edge of wing semispan slats 25-percent semispan slats Area C added and hinge line moved to trailing edge of wing 25-percent semispan slats Area F added Neutral Fins moved outboard, area E added, surface made movable aft of 50-percent-chord line Neutral Fins moved outboard, area E added, area G used as rudders Model 5 55.4-percent semispan slats Model 5 Single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail nowed rearward l.7 inches Dual vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as original single vertical tails adde with seme tail volume as origina	Split rudder Nodel 2 Compercent Semispan slate S	Split rudder Model 2	Wing Wing-tip rudders Vertical fin Other part Characteristics In figure Nodel 1


NACA RM L50L29

TABLE III .- MODIFICATIONS TESTED ON MODELS - Concluded

Modifica]	Modific	stion made to		Effect on spin	Modifica-	Data
tion	Wing	Wing-tip rudders	Vertical fin	Other part	and recovery characteristics	tion shown in figure	presented in chart
	<u></u>		Model	8	·		<u>'</u>
A	Spoilers				Slightly beneficial	5(£)	8
В	Increase dihedral to 80				Ineffective		8
c			Moved rearward	Large horizontal tail	Beneficial in improving trim condition	5(f)	Not presented
			Model	10			
A			Ventral fin l		Ineffective	5(g)	Not presented
В			Ventral fin 2		do	5(g)	Do.
Ğ			Vertical fin 1		do	5(g)	Do.
D			Vertical fin 2		do	5(g)	Do.
E			Vertical fin 3		do	5(g)	Do.
F			Vertical fin 4		do	5(g)	Do.
			Vertical fin 5			5(g)	Do.
H			Vertical fin 6		do	5(g)	Do.
I	Spoiler 1		Vertical fin 2		do	5(g)	Do.
J	Spoiler 2		***************************************		do	5(g)	Do.
K	Spoiler 3				da	5(g)	Do.
L	Longitudinal fence 1					5(g)	Do.
м	Longitudinal fences 1 and 2		*		do	5(g)	Da.
N	Longitudinal fences 1 and 2		Vertical fin 5		do	5(g)	Do.
0	Elevon spoilers		Vertical fin 5		do	5(g)	Do.
P	Slotted elevon; slats 1				do	5(g)	Do.
Q	Slotted elevon;		444		do	5(g)	Do.
R			Vertical fin 7; dorsal fin 1		do	5(g)	Do.
8			Vertical fin 7; dorsal fin 2		do	5(g)	Do.
T				Supplementary tail 1	Very slightly beneficial	5(g)	Do.
σ	Spoiler 5				da	5(g)	Do.
Ψ.	Spoiler 6			7	9	5(g)	Do.
V	Spoiler 7				QQ	5(g)	Do.
- x	Spoiler 7		Vertical fin 2		do	5(g)	Do.
- Y	DJOZZEN		701 11011 1111 2	Supplementary tail 2	Beneficial	5(g)	Do.
z	Spoiler 4					5(g)	Do.
A'			Vertical fin 7; rear- ward portion movable as rudder	7	do	5(g)	Do.
		<u> </u>	Model	11	<u> </u>	·	L
A.	Ailerons drooped 220				Ineffective		11
В	Aileron chord and area dou- ble; ailerons				Slightly beneficial in improving trim condition		11
c	drooped 220				Ineffective	5(h)	11
 	* - 4 A			}	Slightly beneficial	-1-1	
ם	Fin B	~411412222414141	~^44-~==p=================================		in improving trim	5(h)	11
E	Spoilers	*		~~~~~	Ineffective	5(h)	n
F		Fins and rudder moved to wing tip		**	Ineffective	5(h)	11
G				Fin C	Ineffective	5(h)	11
H				Fin D	Ineffective	5(h)	11
لــــّــا		L		L	L		لبيتبا

CHART 1,- SPIN DATA OBTAINED WITH MODEL 1

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in the clean condition and recoveries were attempted by rapid full rudder reversal; right erect spins]

			Lo	adir	ng A					•				Loa	dine	g B									Lo	adin	g C					
Ailerons	Aga	ins	t		Neut	ral			Witi	1		lgai	ıst		Neut	tral		_	7	lith		Ag	ains	;			Neut	ral		7	fith	
Elevators	บ	N	ם	U	l "' Ł	N (a)	D (a)	(a)	U 1	(p		N	D	U (a)	U (a)	N (2)		D (c)	ซ	N	D (ъ)	(bc)	N	D		Ū	(d		n d bd)	ŭ	N	D (c)
a, deg ø, deg Ω, rps	36 2D 0.40	N o	٥	0°10 710 33	== == ===	N o	149 2D 0.51	N o	0 :	.6 - .55 -	- N	N	31 0.8	-	ı,	64 10 0.6	N	 	77 21 0.72	80	=		N o	-	0	50 10 0.35	10	·	= N	76 0 0.64	51 50 0.40	
V, fps Turns for recovery	220 1 1 1 1 1	s i n	133	22 <u>1</u>	173 -	p i n	191 2 ¹ / ₂	1 p	162 2	3	- s p i n	p i n	6	6 220 - 급	s p i	165 2	p i n		160 5	1	\top	1	p i n	4	7	215 1 ¹ / ₂	2	-	p i n	5	198	-
		1		oad	ing D		•						•	L	adir	ng E		!						-1	Lo	adin	g F				.d	
Ailerons	Age	ins	t		Neut	ral		Ħ	ith		٨	gain	st		Ne	eutr	al				With		A	gain	st		Ne	utra	1	W	lth	
Elevators	σ	N	D		Ū	N	D	U	N	D (c)	U		N	D	ī	0	N	D		U	N	(c)	(p)	N		<u>'</u>	ט	N	D	ū	N	(b)
c deg	N	N	84 10		0 Hz	n	N	1D	53 50 0.57		10 10		73 0	83 0 1.00	21	0		0.	0	1D 0.89	51 8D 0.17		=	=		ю	59 3D	74 10 0.64	67 2D 0.56	80 2D 0.72	59 70 0.15	
N, rps V, fps Turns	s	s p	133		209	5 p	p	0.79 151	182	Ē	23	-	162	133	202	-	180	17	_	162	187	1=	=	F	12		182		162	153	178	Ξ
for recovery	i n	n		-		n	n					-	쳣		1	2	3	> 3	3	5			-	-	-	-	21/2	3				
Allerons				Los	ading	G					Los	ding	A,	flaps	down	60°					exter	landi ded	ng			L	oadi	ng A	, land	ling co	nditi	.on
Elevators	Aga	ins	t		Neu	tra	1	W	1th			inst	1	leutra.	١	Wi	th		-	inst	N	eutra		Wit		₩	ains	_	Neutr	,	rith	_
Rlevons as Elevators	U	N	D		U	N	ם	ŭ	N	D (c)	U	N 1	ין ני	1 1	D	U .	N	ם	ŭ	N	D t	N	ם	U	N E	1	N	D	מוט	D U	1	- (
ø, deg Ø, deg O, rps V, fps Turns for recovery	N o s p i n	0.6 10	4 0.8	8	38 1D 0.39 215	N o s p i n		75 1D 0.74 155	149 5D 0.149 189	1 1 1	 		No spin	- N 0 - s p 1	N C	75 0 0,72 158			0 8 21		_	0 5 0	N O	78 LD .72 58		No spin	N o s p i n	0 8 0,1	N N O O O S S P P I I n n	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 20 2 0.U	8 - 5 -
	Loading A - Modification A - right rudder 60°, Loading H									-			Loa	ding	у Н,	rude	ler-1	neutr	ral sp	ins												
Ailerons	Ag	Against Neutral i								th			Agai	nst		Neut	tral		ï	Vith			Agai			上	Neut				With	
Elevators	Ū	H	D	U (a)	-	_	N	D	U	Ñ	D	U	N	D	U (bf)	- 1		E)	U		и (b)(t		N	\int	D 67		J	N	(e)		(c)	(
a, deg b, deg n, rps y, fps Turns for resovery	No spin	No spin	N D U U N D U (a) (a) (a) 78 N 89 65 71 78 N N 1U 1D 0 0 0.55 0.64 0.71 0.78 136 8 184 162 162 158 P 1 0 1 0 3 1, 62						67 1D 0.58 163		N C S P I n	173 3 5½	81 0 0,56 134	6D 0.2 200	4	 		81 1D 0.5 158 51 21 21	5		N S	2	18	0.4; 17;	` l s	5	N s p i n		- 71 - 40 - 0.4 - 18	3	- - - - - - - - -	

Two conditions possible.

Model oscillatory in pitch.

Steep spin, high rate of descent.

Two types of spin.

Model want into steep rapid spin after rudder reversal.

Wandering spin.

NACA

電子 蛭 (1912)2000 1 公安

NACA RM L50L29

CHART 2 .- SPIN DATA OBTAINED WITH MODEL 2

Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in clean condition and recoveries were attempted by rapid full rudder reversal; right erect sping

			Loading A					er reversal; r		Loading A controls neutr	
Ailerons		Inst	Neutral			With		4			
Elevators	Full U U	1/2		$\overline{}$	1/2	Full		Against		Weutral	With D
	(a)(b) (b)	H C H	(c) (b)(d)(b)(d)	لتبل		b)(c)(b)(c) (c	;) (c)	UN	D U	מ ת	(c) (c) (g)(h)
ø, deg		N N N	30,40 20,10 30,20 g	N O	33,26 10,20 2	38 49,41 39, 0,20 10,20 10,	,32, 32 ,10 20,10	N N	N N	8	32,22 35,25 30,40 30,20
Ω, rps	0.21	p p p 1 1 1	0.21 0.37 0.38 P	P			35 0.39	p p	P P	P	0.23 0.40
∀, fps	213 d ₂	ממח	1 1	n	507		179 188	пп	n n		213 204
Turns	e ₁ e ₁			1 1	- }	21,21	2		-	1 1 .	
for	\$7 2		<u>t. t</u> _5		.	_3 <u>5</u>					
			£,1	11		- °-			1]
	middan	Loading A	not the entr	ا با		Loadin	 16 B			Load	ine C
Allerons		Neutral			T		-		+		
	Against	1.1.1	U U D	Agair U N	$\neg \vdash$	Neutral H D	ם פ	With U R I	Agains	T , T ,	
Elevators u, deg	U N D W	(b)(b)(g) ~	(b) (b) M (g)	(c) (1	0 2	(e) (b) (t	%)(bXc)	(b)(c) (c) (d	:) (e) "	D (c) (c)) ^D (e) (e) (e)
ø, deg	° ° °	0 == 0	2U,3D - U	1,33 1,40	╛╚				,3237,26 H	73,39 37,3 20,30 AU,	10,20,20,10,00,20
0, rps	9 9 9 9 1 1 1 1 1 1	p p	P	206 -	-la -		186 163		182 216 1		
Turns			n	_	7 -				3/4	1 -] »
for recovery				2,2	‡	本 >3 3	>6 2,84	>3 •	1 1/2	출축 >5) " " >7
		Loading	D			Loading E	1			Loading F	
Ailerons	Against	Neutral	With	Ag	minat	Neutral	Wit	h	Against	Neutral	Aitp
Elevators	(c) H D	U N (c) (c)	D (c) (c) (c)	(c)	H 1	(c) T	U N (c) (c		n D D		(c) (c) (c)
		7-7 13732	- 53,45 50,38 46,3		_ 0 1 0	ا ۱ استاه	51,40 43,			22 1 16,40 4	5,21,63,51,56,41,49,35 7,10,40,40,20,40,0,30
Ø, deg Ω, rpa	0.20	1-72- 3-7-	- 10,30 30,40 10,2 .35 0.29 0.32 0.3		4 4	- s s	4υ,ο 3υ, ο.39 ο.	51 = 0.13	0.15	- 0.28	7,10 40,40 20,40 0,30 0.32 0.29 0.31 0.31
V, fps Turns	191 i i		201 160 176 16	21		216 p p	185 1	82 1 186	i in l	97 1 185	185 160 166 182 24 2
for recovery	1 2 2 " "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1/2 *	' "	' -	>7	• •		ᄬᆛ	,1 " 3,1	2월 2 3 2월
		losding	G.			Loading	E		<u> Io</u>	ading A - Mod:	ification A
Ailerons	Against	Weutral	With	Age	inst	Neutral	,	With	Against	Neutral	With
Elevators	U N D (a) (c) (c)	U H D	(c) (c) (c)	(c)	ם א	U N (c)	D (c)		c) x D	(a) (b) (b)	(c) (c) (c)
a, deg	- 54,4052,4	3 N 55,41 51,		36,22	NN		~				59,48 47,38 40,30
9, deg 9, rps	- 60,8030,1	30,70,40,		0.33		0.27			.16 * 0	2060 1020 807 0.21 0.33 0.43	20,30 10 10 0.35
V, fps	- 166 166	1 170 ·16		209	P P 1 i	197 -	1 176		201 2 2	188 201 201	
for recovery	1,1 2,1 1,2 2,1	3,1 3,	3 1,14 1,14 1,1	>5	n n	d,>4	n -		2 " "	1 d 12,3	3 2 1 , 3
	Los	iing A - Modif	ication B		Lo	sding A - Modi	ification	С	L	oading A - Mod	ification D
Ailerons	Against	Reutral	With	Age	inst	Neutral		With	Against	Neutral	With
Elevators	U N D	(c) (c)	D (c) (c) D	U (a)	й (e)	(o) (c)	D (6)		U D	U N (c) (c)	D U X D
α, đeg	36 H	48,41 34	n 48 55,41 35	38	34	1 14 38	47,37 49,	42 48,38 38	46,23 R	49,34 38,21	N 42,30 49,31 40,26
ø, deg	0.31	0.33 0.41	5 0.41 0.44 0.44	30,10	3U,4D	10,3D 10,2D 0.31 0.41	30,20 20, 0.44 0.	2D 10,10 20 12 0.43 0.45	0.32	0.22 0.43	50,20 10 50,10 0.30 0.38 0.44
V, îps	184 i	161 157	1 151 157 163	174		164 170		A6 151 154	220 1	207 207	p 1 220 192 188
furns for recovery	- n	2 1/1 d _{>4}	n	-	3 <u>2</u>	` • •	2월 '	~ - -	l l "	1,12 7	n 2½,3
			sting completely.		ــــــــــــــــــــــــــــــــــــــ		<u></u>		4		

recovery:

23/4

Studius of spin too great to permit testing completely.

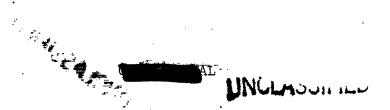
Pro types of spin.
Oscillatory spin range of values or average value given.

Prostant estimate.

Recovery attempted by neversent of elevators to down.

Recovery attempted by neutralization of rudder controls.

Socializatory in pitch.


Sacializatory in pitch.

Steep, wandering spin.

Steep, wandering and oscillatory spin.

Tiolently oscillatory in pitch. Amplitude of oscillation increased until model pitched inverted and then stopped spinning.

CHART 3.- SPIN DATA OBTAINED WITH MODEL 3

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in the clean condition and recoveries were attempted by rapid full rudder reversal; right erect spins

		Wentral With	Ag	gainst X	eutral With	
Elevators U N D U N D U N D (ab) (ac) (d) (a, deg 36 26 2	5	U X D U X				1
(ab) (ac) (d) (ac) (d) (ac) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	5		ט מ	N D U	א ט ע א	₽
		(g) (bd)	(bd) 32 28	+	(dg)	
9, 4, 4	N N N	W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10 1	N N N	N N 20	ă 0
V. fps 377 s s 366 350 319 350 30	1 5 5 5	s>350 319 3	50 383 P		s s 298	g P
Turns i i i recovery e ef ef	p p p i i i i n n		8 e i n	p p p i i i n n	p p i i i h i i h i i i i h i i i i i i	i
Loading A, slots open, rudders against spin Loading A,	slots open	Loading B, rudders again	nat apin		Loading B	
Allerons Against Neutral With Against N	utral With	Against Neutral	With	Against	Meutral Wit	th
Elevators U N D U N D U N D U N D U N D U	N D U N D	U N D U N D U (a,) (1)	m D	UND	(a) (1) (t	(1) (1)
a, deg . 29 44 30 26	я и 1U и	и и и и	38 33 25 50 80 7	<u> </u>		29 25 10 10
0, deg	0.26		15 0.19 0.1	3 0 0	° 0.22 0.	15 0.24
V, fps s s s 3377 s s 338 329 350 s s s s s manuar i	5 8 377 8 p p i i i	5 8 8 8 P p p p i i i i i i	20 350 35	S S S S S S S S S S S S S S S S S S S	383 = 266 3°	72 378
Turns i i i i i i i i i i i n n n n n n n n	p p ii n n n	1 1 1 n n n n n n		. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f>4 n = >	2 > 8
Loading C Loadin	3 C	Loading D rudders against sp	tn .		Loading D	
Ailerons Against Neutral With Against Neutral	With	Against Neutral	With	Against	Neutral Wi	th
	U N D	ע אים ע אים ע	מ או ט	U M D	ע ע ע ע ע	
(a, deg 147 36 34 53 34 53 34 (b) deg 147 36 80 70 N N N 10 10 10	25 64 49 35 10 10 10 20	и и и и и и	n n n	756 N		73 60 10 10
	18 0.230.18 0.15	0 0 0 0 0	0 0 0	0.17	0.21 0.19 0.23 0.	21 0.19
''	98 253 282 329	8 8 8 8 8 8 8 8 9 9 9 9 9 1 1 1 1 1 1 1		255 p		34 244 3 1 3/2
Turns	72	1 1 1 1 1 1 1 1 n n	1 1 1 n n n	i fi r	2 2 1 1 4 1	3 2 2
Loading E Loading E rudders against spin	; E	Loading A, pitch flap d down 15°, rudders again	eflected st spin	Loading	A, pitch flap deflection down 150	cted
Ailerons Against Neutral With Against Neut	el With	igainst Neutral	With	Against	Neutral With	h.
Elevators U M D U M D U M D U M D U M D (g)	D U M D U		M D	ם א ט		M D
a, deg			- 25 - 4D -	_ _ _	57	28 10 ±
0, rps 0 0 0 0 0 0 0 0 0 0	N N N N	0 0 0 0 0 0 -	- 0.26	M M M	0 0 0 0.25	"
V, 196 s s s s s s s s		B S S S S		1 1 5 2 7 7	s s s 255	
Turns p p p p p p p p p p p p recovery n n n n n n n n n n n n	p p p p i i i i i	p p p p p p p i i i i i i i i i i i i i	p	p p p i i i n n n	P P P I I I I I I I I I I I I I I I I I	f f i >8 n

*Large radius oscillatory spin, average values given.

bwandering spin

CSteep wandering spin.

doscillatory in pitch.

Recovery attempted by moving rudder to full with the spin.

fyisual observation.

Steep spin.

hRecovery attempted by moving rudder to full against the spin.

**Oscillatory spin.
**Occasionally oscillated out of spin.

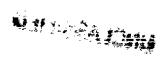

UNCLASSIFIED

CHART 3.- SPIN DATA OBTAINED WITH MODEL 3-CONCLUDED

			L				ing co	ndition	b, 						g A,	lar on	ding	:			Lo	eding close	A, lar	ding o	ondit:	spin	lots	
Ailerons	,	gain	•t	}	1	Teutra	1		Fith		Á	gsi	st		ieut	re1	,	Jith		A	ainst		N	eutra:	L		Vith	
Elevators	U	N (1)	(;	,	U	W (1)	D (1)	Ü	N	D	ם	N	D	บ	N	D	υ (1)	N	D	Ū	N (1)	D	Ū	Ħ	D	Ū	Ħ	D
a, deg	27		3	5	31	22	26	47	28	33							\Box			26		33	30	29	29	40	35	30
ø, deg	80			ìD]	4 D	ච			4Đ	20	N.	N	N	M	N	N	回	N	N	. 30		50	30	30	20	20	40	AU
fi, rps	0.13		0.1	6	0.15	0.17	0.18	0.21	0.20	0.21	ا ۾ ا			8		8	ᆸ		8	0.14		0.19		0.20	0.21			0.55
Y, fps	350	383	31	٥	320	360	308	276	320	329	p 1	P 1	p	P	P	P	ᅼ	1	3	319		324	303	319	319	276	298	308
Turns for recovery											1	n	<u> </u>	n	'n	n		n	ī			- -	-:					
		Lose	ling	Α,	landi lots	ng co close	nditio	ů,		-			late	ry	ilge.	1, 81	reray	50 VI	alue	s giver				¥	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ACA	2000	
Ailerons	Agai	nst	N	nıtı	al	,	Vith			illato: ressing			— m	y r	ot:	pin.												
Elevators	U (k)	R D	¥	Ħ	D	ŭ	(1)	D (a)																				
a, deg.			П	_	П	30																						
ø, deg		MM		N		10																						
û, rps		00	0	0	• [0.15																						
V, fps			5	8		340	340																					
Turns for recovery		p p i i n n	P n	P 1 n	1 1		-																					

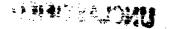
CHART 4.- SPIN DATA OBTAINED WITH MODEL 4

Unless otherwise indicated, the steady-spin data are for rudder-with spins of the model in the clean condition with split trailing-edge rudders installed and revised elevon deflections and recoveries were attempted by rapid full rudder reversal, right erect spins.

	1												t erect		<u> </u>						•	·		
	<u> </u>					Loadi			ar-arc	type	ruđ	ders i	nstalle	d, orig	inal e	levon	deflec							
Rudder			ains	 -				With				Vith						N	leutra.	1				
Ailerons		Ful		1,	/2	. Ne	utral		1/2	T		Fu	11			Agains	t		Neutra	al.		W:	ith	
Elevators	U	. N	1	D 1	/2	(a)	n	Д	1/2 U	,	Ū	1/2	N (ъ)	D	Ü	N	D	U	N	1	•	(ъ)	N	D
α, deg	N	N					N	N	37		34	33	34	N	N	N	N	s t	N	N		25	N	N
ø, deg	8		i	l i	Į		8	6	10		2 U	10	20		F	"	5	e	1			٥	0	0
Ω, rps	p	p			. 1		p	p				0.67	<u> </u>	P	s P i	p	p	e p	p.	1 1	, (0.69	s p i	s p i
V, fps	n	n			1	>190	n	n	196	1	85,	194	180	n	n	n	n	8	n	1		214	n n	n
Turns for recovery	c ⁴ 7	°32	cd	1 c.	1 2		^c 7	cq ^{j†}		l °	9			cd _{l4}	^c 7	c ₅	cd _{lt}	p i n	°5	cđ	14		c ₁₀	cđ ₈
		Loss ins	ding talle	A, cir d, ori	cular gina	r-arc	type r on def	udders lection	ns		L e	oading levon	A, cir deflect	cular-s	re typ modific	e rudo	lers in A	stall	ed, or	igin	al			
Rudder					gain	st	,							With					\perp		Ag	ainst		
Ailerons	Age	ainst		Ne	utra	1		With		A	gains	st	N	eutral			With		Ne	utre	1	ī	71th	
Elevators	U	R	D	U (a)	N	D	и (ъ)	N	ם	ָּט	N	ם	U	N	D	υ (e)	N	D) t	J R)	N	บ (e)	N	D
α, deg	N	N	N		й	N	30	N o	N	N	N	N.	42	45	N	· 51		_ 0		_	N o	33	N	N
Ø, deg	a	В	ā		_ s		111	Ц.		8	8	8	50	10	В	0		Ш.		_		110	B	8
Ω, rps	p	p	p		P	p	0.74	_ P	p	p i	p	P	0.63	0.62 166	P i	0.64		— ֈ			P i	0.62	P	p
V, fps Turns for	n	n	ņ	>249	l n	 -	208	n	n	n	n	n	171	, ,	n	158	-	<u>' n</u>		54	<u> </u>	196	n	<u> </u>
recovery	c _{l4}	^c 3	cđ ₃ 1		°5	cđ ₅		g 15	cd ⁾⁽¹	c ¹⁰	c ₁₂	^{cd} 15	> 6	12 - 14	cd _{ll}	9 <u>1</u>	3	cd1	4		°7		°6	cd6
								٠			1	Losdin	g A											
Rudder					1	W	ith										A	gainst	;					
Ailerons		Aga	inst			Neu	tral			Wit	ь ·			Against			Ne	ıtral				With		
Elevators	U	\perp	И	D	U		N	Д	υ	N		D	υ (σ)	N	D	(Մ ъ)	N	ם		и (ъ)	N		ם
α, deg	N		N o	N O	N		N	N	N O	1	N	N	20	N	N	-	26	N N	N	-	31	-		N
Ø, deg Ω, rps	s		В	8			s		8	١.,		8	3D 0.53	8	8		3D 45	g	8	F	2D 0.51	┨ ,		В
V, fps	p		p	p	p	-	p i	P	p		p	P .	208	p	p	-	99	,p i	p	۲	199	-	2	P
Turns for recovery	양	+-	c ₇	cd _{ll}	c ₈	-	e ₁₀	cd ₇	0 18	₩	11	cđ ₆	200	c ₈	cd ₆	- 		- <u>n</u> -c ₇	cd ₅	+		اء ا	16	cd ₈
	-					t	1_	1		Lo	adin	z A . m	odifica	tion B	<u> </u>				L				٠.	-
Rudder																								
Ailerons		Aga	inst				With tral	}		Wit	h		+	Again	st	T		gainst eutral				Witi	n	
Elevators	U	T	N	D	ט	1	N	D	Ū	_	 N:	D	U	N	- i	D	י ט	N	Д	+	U	, n		D
α, đeg		+	N	N N	N		N	N	. 60	\perp	N .	N	Ň	N N		N	N	N.	N	+	29	1	4	N
Ø, deg	• •	1	٥	ο.	0	Ì	•	•	10	\dashv	0	0	•	"		•	•	0		H	29 20	- 6		
Ω,·rps	s P		s p i	p	a p		8 D	s P	0.56	7	s P	s P	8	s p		B D	s p	8 D	s P		0.52	; ا		8
V, fps	p i n		i n	i	i n		i	i	163	1	i n	i	i	i	ı	1	i	í	i	T	182	- 1		p i n
Turns for recovery	c ₁₁		°11	cd8	c10	,	27 <u>1</u>	cd7	>7	7	13	cd ₁₀	c ₉	c ₅		14	c ₇	cg	cq ¹⁴ 3	<u> </u>		c,		cd6

alarge radius spin; model may eventually recover.

Starge radius spin; model may eventually recover.


bWendering spin; slightly oscillatory in pitch.

CNumber of turns required for model to stop spinning after being launched with initial spin rotation.

dAfter recovery, model goes inverted.

coscillatory in pitch.

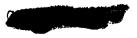


CHART 4 .- SPIN DATA OBTAINED WITH MODEL 4-CONTINUED

Loading A, modification C

Against
Elevators U N D U
Servators U
\$\textit{g}\$, \text{deg}\$ \$\begin{align*}{cccccccccccccccccccccccccccccccccccc
9, deg
Turns for recovery Cg C7 Cd6 m C12 Cd12 m m Cd7 C8 C46 m C7 Cd6 m C12 Cd12 m m Cd7 C8 Cd6 m C7 Cd6 m Cd7 C
Rudder
Ailerons
Allerons
Elevators U N D U N D U N D U N D U N D U N D U N D U N D U N N D U N N D U N N D U N N D U N N D U N N D U N N D U N N D U N N D U N N D U N N D U N N N N
Elevators U N D U N D (eg) N D U N D U N D U (eg) c, deg N N N N N N N N N N N N N N N N N N N
\$\frac{\phi}{\phi}\$, deg
\$\begin{align*} \begin{align*} \begi
Turns for recovery California Californ
Turns for cl2 cl8 cd18 cl5 c7 cd15 = cl5 cd10 1 c7 cd10 1 c8 cd10 1 n c9 cd10 1 n c8 cd10 1 n c9 cd10 1 n c9 cd10 1 n c8 cd10 1 n c9 cd10
Loading B, circular-arc type rudders installed,
Rudder With Against With Against With Against With Against With Against With Against With With Against With With Against With With Against With
Adelerone Against Neutral With Against Neutral With Elevators U N N D U N D U N D U N D U N a, deg 36 N N 47 43 N 52 47 39 N N N N N N N N N N f, deg 70 0 90 0 30 50 40 40 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Elevators U N D U
(hi) N D (i) N D (i) (i) (i) O N D O N D O N a, deg 38 N N N 47 43 N 52 47 39 N N N N N N N N N N \$\overline{\psi}\$, deg \begin{array}{c c c c c c c c c c c c c c c c c c c
Against ## Ag
Against Heutral Heu
V, fps
V, fps 197 n n 185 185 n 177 174 191 n n n n n n n n n
Loading A, modification E Rudder With Against
Loading A, modification E Rudder With Against Reutral With Against Reutral With Relevators U W U N D U N
Ailerons Against Neutral With Against Neutral With Elevators U W U N D U
Against Neutral With Against Neutral With Elevators U W U N D U N
a, deg N N 68 N N 50 59 70 S N N 35 N N 46 35
\$, deg . 8 8 W 5 8 8 W W W e 8 8 3D 8 8 8 W 3D
0, rps p p 0.76 p p 0.53 0.76 0.86 p p p 0.67 p p 0.63 0.69
V, Tps n n 155 n n 176 126 123 s n n 202 n n 185 185
Turns for recovery c20 c30 w c22 c15 w d7 d8 i c13 c12 c13 c10 c

Chumber of turns required for model to stop spinning after being launched with initial spin rotation.

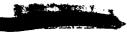
dAfter recovery, model goes inverted.

^eOscillatory in pitch.

 $f_{Wandering}$ and oscillatory in pitch.

gwandering spin.

hlarge radius spin, model may eventually recover.


 $^{^{1}}$ Wandering spin; slightly oscillatory in pitch and roll; range of values given.

kOscillatory in roll.

CHART 4.- SPIN DATA OBTAINED WITH MODEL 4-CONTINUED

										Load	ling D,	modifí	cation	ı B												
Rudder							With		-				\top		-			Agai	nst				•			1
Ailerons		Aga	inst				Neutra	1			With			. ,	\gains	t		Net	rtral				Wi	th		
Elevators	บ (1)	N (7	.m.)	D (lm)		U (1)	N ·(lm)		D lm)	U (1)	N (lm)	D (lm)	U		N	D	τ		N		D	Մ (բ)		N p)	D	
α, âeg	73		56 95	6 9		75	69 83		58 78	58	60 76	56 8:	∐ ։		S t	N	S t		s t	1	s t		\perp		S t	
ø, deg	10		10 10	5 14	D C	0	0		60 වෙ	20	٥	70 51) 8		e e	8	6		e	1	e e		\perp		e	
Ω, трв	0.91	1.	16	,1.1	4 C	.96	0.98	0.	.92	0.71	0.95	0.9	1		P	p i n	1	- 1	P		B		+	_	p s	
V, fps	246	1 2	31	23	—	246	233		234	263	252	5#0	1	_		ļ	Ļ	,	P	٠.	<u> </u>	297	5	78	P 1	4
Turns for recovery		>	8 10	. 1	" ı	>13 n ∞ >8	>15	·	11	>15	>7	>6	5 c1	4	n 916	c ₁₃	91	١	g15		n				ñ 917	
***************************************		سماد					ding I), по	dific	ation	D	حجميط			1		Lo	adin	g D,	mod11	icat:	lon F	.*.			7
Rudder					V	ith				-	1	Agr	inst						300	With						
Ailerons	Ag	ainst	;		Neutz	al			With		Ag	inst	Neu tra		With	Agai	nst		Ne	utral			¥	ith		
Elevators	ט	И	D	U		N	ם	U	N	Ð	ע	N	ŭ		U	U	N	ם	U (g)	n	D	(J p)	N	מ	
a, deg	n o	N	N	St		s	N	s t	S	N	s	s	ş		s t		N	N _		s	N	L	\perp		8 t	
Ø, deg	8	В	6	e		e	8	e e	e	. 8	e	e		.	e e	В	8	s	_	e	8	-	-		e	
Ω, rps	p	P 1	p i	p		₽.	P	P	P	1	g	p	I	·	P	i [p i n	p i n	328	р	n n	-	72	341	P	
V, fps Turns for recovery	e ₂₃	°25	n 30	p i n q27		8 1 1 30	n c20	p i n	q 2	2	3 1 n q 30	p 1 n	q		p 1 n q ₃₀		18			p 1 n 215	dk ₂	 >	6 <u>1</u>	3.4	p 1 1 1 15	
		Lond	120	D, mo			n F		-	1	1 30	30		<u> </u>		ling D,	modi	ficat	ion (
Rudder		1000			inst						<u> </u>	30	o Wit	h							30° A	gains	t			
Ailerons	Ag	ainst	;	N	eutra	al	,	lith		Ag	ainst	Ne	utral			With		Ag	ainst	:	Ne	utral			Wit	'n
Elevators	U	N	D	ט	N	ם	U	N	D	Ū	И р	υ	N	D	υ (φ)	N	D	υ	N	D	ט	N	D	ឋ (ទ្)	· N	
a, deg	N	N	N	S	S t	N	S t	s	N	N	N N	Ss	N	N			3 8	N	N	N	S s	S 8	N		S t	
ø, deg	٥	8	8	e	e	5	e	e	В	ß	8 B	t p e i e n	8	В			t p e i e n	å	В	8	e i e n	t p e i e n	a		e	1
Ω, rps	p	P	P 1	p	P	p	P	P	p i	p i	p p	p	p	p i			•	P	P	P	P	P	ı	341	₽ .	
V, fps Turns for	n c ₁₄	e ₁₅	ak ₁₀	p i n	p i n	cđ ₁	p i n	p i	cq15	c _{ll}	e ₈ cd ₁	25 2dor 1 1/4	c ₁₀	n cd ₁₅	354	309	^q 19	<u>п</u> с ₉	r _{c8}	cd ₈		_d 15	cd ₁₂	344	q ₁₅	C
recovery	i i			q ₁₃	q ₁₂		^q 15	Q ₁₅				2 1/2						<u> </u>							<u> </u>	
recovery							Loadi	ng D,	modi	ficat	ion H		Amai					_		Los Wit	ding	D, rec	odifi		n I gains	+
					70.44					<u> </u>			Agai		1	With		Ne	tral	1			+		Series.	•
Rudder					With		Т			١.		- 1									Utth		Net		U-	+34
Rudder Allerons		inst		N	eutra		 	With	1	╀	gainst		Neutr	Т	u		_			-	With	1	tre		Wi	_
Rudder Ailerons Elevators	Ū	N	ם	n.	eutra N	ם	ŭ (p)	N	D	U	N	D U	N	D	(p)	N (g)	D	Ū	N	U	N	D	tre	(J s)	N
Rudder Ailerons Elevators a, deg	U N o	N N	D D	U Ss tp	N S s	D	Ü	N S s	S i	U B. N	И	D U	N s S	D B N	(p)	N (g)	S s	U	N N	Ss	N N	D	tre U S t	s p	J s)	N S s t p
Rudder Ailerons Elevators	U	n	D	U	N S s	D	Ü	N S a	S i	U a. N	N N o	D U	N s S p t	D B N	(p)	N (p)	S s	U N o	N	Ss	N O s	D	U S t	1 (J s)	N S s

CNumber of turns required for model to stop spinning after being launched with initial spin rotation.

27

dAfter recovery, model goes inverted.

Flat and wandering spin.

 $^{^{\}rm m}\!_{\rm Oscillatory}$ spin; range of values given.

ⁿRecovery attempted by elevon reversal, stick moved from full back to full left and forward.

ORecovery attempted by simultaneous rudder and elevon reversal; stick moved from full back to full left and forward.

Steep, wandering spin.

Number of turns before model strikes safety net.

Recovery attempted before model reached final steep attitude.

⁸Steep spin.

NACA RM L50L29

CHART 4.- SPIN DATA OBTAINED WITH MODEL 4-CONCLUDED

			Loa	ding :	D, mso	difica	tion J						-		L	oadi	ng D,	modif	icatio	n K						
Rudder			V:	ith					Agai	inst	•	• •		•			With						Age	inst		
Ailerons	Ne:			W	ith	-	Neu	tral			With	1		Ne	utral			Wil	th			Neutr	al		W1	th
Elevators	,	,	บ]	N	D	υ (a)	N		ប (e)	N	I		n	ı	,	ប	N		D	U (m)	×		а	Ū	D
α, deg	1				N	N		N	\top		S s t p	N		N	N		N		HT	N		N		N O	8 .	Ħ
∮, deg	, ,	- 1]				°			e ī	9	- 1		١		9			° l] :		i	e i	۰
C, rps	1	, 1			P	p 1		P			e n P	1	ı İ	P	1	,	P	1 :		P		P		P	e n	P
V, fps	-		249	╙	<u> </u>	n	315	n	3	15		'n		n	n	1	n			ñ	297	<u> </u>		n		n
Turns for recovery	e ₃	0		۰	30	.cq.20		cd ₁	5	ļ		eđ ₁	.e	c 12	cd	10	°20	·	50 c	10 d		°ı	.4	_{cq} 70		^{cd} 10
			Loadi	ing D,	, win	-tip	rudders	neutr	al, r	odif:	lcatio	n L					Lo	ading	D, la	nding	cond1	tion,	nod:	lficat	ion B	
Rudder			:	30° W	th						300	Agai	ae t								Wit	h				
Ailerons	Ag	ainst	T	Neut	ral		With		Agai	nst	1	Neutr	al		With		A	gainst	t		Neutra	1		ÿ	ith.	
Elevators	N	В	(t)	, 1	N	D	N (e)	D (t)	'n	D	(t)	N (t)	. '			D t)	ซ	И	D	U	N	D		บ (g)	H (eg)	D
a, deg	Ħ	N	Se				37,66	Ss	N	N	Ss					8 a	S 8	74	74	Ss	59		\top	58	60	T
ø, deg	° s	8	t p	. e	ž	°	1.0	t p e i	۰	8	t p	t p	Ι.			t P	t p	10	מנ	t p	10	l °		SD	מג	۰
Ω, rps	P	p	e n	ı e	n	p	0.61	e n	p i	P	e n	e n	1 3	0.0		e n	e n	1.08	1.05	e n	0.74	ַ <u>.</u>	0	.68	0.79	ŗ
V, fps	n	n	ــــــ	<u> </u>	_	i n	282		п	1 n		L	1		48			234	234		240	.L		263	252	i n
Turns for recovery	c ₁₈	c 19	57 d	92	4 6	² 26		q 26	c 13	eq 15	q 18	q 19	cd.	6	ľ	20 q	g 30			940		dq 7	0			ed. 38
	L	osding	, D, 1	andin	g con	dition	, modii	ication (on B						Load	ling	Е, по	dific	ation	В						
Rudder					Agair	st							1	/1th							Α,	gaine	t		*****	
Ailerons	Ą	ainst	i		Neutz	aI		With		Ag	ainst		Ne	utra	1		With		Agair	et	Ne	utral			With	
Elevators	U	n	ם	ម	N	D	บ (g)	N (eg)	D	σ.	N	D.	υ	ĸ	D	U	(e		u n	D	U	И	D	U (ep)	(g)	D (p)
α, đeg	N	N	N	8 8	8 8	N			Ss	Ħ	N	N	N	N	ĸ		62 45,		N N		N	N	N	22,45		
ø, deg	8	8) °	t p e i	t p e i	5			t p e i	0	8	0 6	٥	0	о в	_	50 JJ	ן סקנ	٥	1	0 8	•	۰	SD		
Ω, rps	p i	P	p	e n P	e n P	p	igsquare		e n n	P 1	p	P	p	p	p	0.	76 0.	79	ם וכ	و ا	P	P 1	p 1	0.60		
V, fps	'n	'n	n			n	341	351		n	n n	1 1	n	n	n	1			i i		1 n	1 1	1 n	254	263	247
Turns for recovery	c ₂₁₄	c ₁₄	cq15	927	^q 24	₫.g ₂₀			g ₂₁	c ₁₆	c34	^{cd} 28	^c 18	e ₁₄	^{cd} 53	523 023	1/4 3/4 18	c	11 °10	cd15	c32	c ₁₀	cq15			

CMumber of turns required for model to stop spinning after being launched with initial spin rotation.

dAfter recovery, model goes inverted. eoscillatory in pitch.

Wandering spin.

 m Oscillatory spin; range of values given.

"Recovery attempted by elevon reversal, stick moved from full back to full left and forward.

Recovery attempted by simultaneous rudder and elevon reversal; stick moved from full back to full left and forward.

PSteep, wandering spin.

quantum of turns before model strikes safety net.

⁸Steep spin.

^tAfter launching, spin progressively steepens.

CHART 5.- SPIN DATA OBTAINED WITH MODEL 5

Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in clean

			condit	tion a	a recove	ries wei	e attem	pted by	rapid f	utt ru	ider re	versal;	right er	ect spi	ıs]					
						ı	oading A	L.						I	oadiı	ıg A wi	th wing	slats e	xtended	
	<u> </u>	A	gainst			1	Neut				W	th			Ag	ainst		Neutral	Wi	th
Ailerons		Full	•		/3	7	Meu			1/3		Full			Full		1/3			
Elevators	U (a)(b)	N (c)(d)	D (c)	2 3 (e)	2 U (e)	U (a)(b)	N (c)	D (c)(e)	D (a)(a)	2 3 (a)	(c)(d)	N (a)	D (a)	ប (e)	U (e)	N	2 3 v	U	Մ (c)(<u>h</u>)	N (a)
a, deg		56 71	54 63	4) 5)			41 47	39 45			43 58			53 58		68 76	50 55	1474 514		
ø, deg		7D	50 90	20 80			82 TD	70 50			16D 190			3D 111	0	4D 0	1D 7D	17D 6U		
Ω, rps		0.37	0.36	0.28			0.32	0.38						0.32	B P	0.39	0.32	0.31		
V, fps	>290	194	191	256	>312	>294	232	230	> 312	> 334	250	> 326	>326	209	i n	191	214	232		> 312
Turns for recovery	f 1 1 2			8 1 ₇		f 3 k f 1	14			fg 3	1 1 ¹ / ₂			, 냛 4		÷	8 13 8 21 21	년 고	塘	f ¥
					Lo	ading B									L	eding '	c			
Ailerons	<u> </u>	Again		/3		Neut	ral			With		A Full	gainst	1/3			Neutral		Wit	:h
Elevators	U	N (c)(h) 2	0	U	N	D (e)	D (e)	(c)(N	ช	N	2/3 U		J .	N (e)	N (e)	ช (a)	N
a, deg		68				41 49				-			50 55				40 49		39 49	
ø, deg		1I 30				20 50							о 60				2U 10U		10D 10U	
Ω, rps		0.35				0.27			0.2	1			0.40		-		0.40			
V, fps	> 31	1.86		300	> 300	238	274	> 312	24	4 >	362	> 326	214	> 300		332	262	> 332	256	> 332
Turns for recovery	f	<u>1</u> 1 1		8 <u>1</u> 8 <u>1</u> 2	f f i	, 1 11 14	2			1		f 1 f 1 2	23 31 31	fg 1 fg 1		f 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 <u>3</u> 1 <u>3</u>	fi 1/4	3 1 1	

⁸Steep spin.

bLarge radius spin.

CWandering spin.

diodel oscillatory in roll and pitch.

eTwo conditions possible.

factovery attempted before model reached final steeper attitude.

SRecovery attempted by reversing rudder to only 2/3 against the spin. boscillatory spin.

1visual estimate.

HTHE ALM

CHART 6 .- SPIN DATA OBTAINED WITH MODEL 6

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in clean condition and recoveries were attempted by rapid full rudder reversal; right erect spins]

							Los	ding	4.				•						Lo	eding	В					
Ailerons		Age	dnat		Т	He	eutral					Witi			丁	A	gainet			Neutr				W1 th		
	 		F -		+			1	-	1/3	+		/ull	- <u>-</u> -						1		1/3		Fu		
Elevators	ű	H	D (a)	D (a)		ŭ	N	I		u (a)	U		H		D D	ט	R	D	ŭ	N	D	U	U		N	D
a, deg ø, deg n, rps v, fps				0.48 265						35, 46 10 0.35 277	0.4	1	21 190 0.57 343	0	20 18D .61 337	•		57 10 0.47 221				0.38 255	0.	12 0		12, 25 80,230 0.78 337
Turns for recovery	и с в р-т п	No spin	N o s p i n	2 1, >8 1, bc_1 1, bc_2 1,	/2/2 /2/4	N o s Pil	N c s p i n			> 4 5 1/2 e 1/2	######################################	1/2 3/4 1/2 1/2	c ₁ 1/4 c ₁ 1/2	-	** 1 1/2 1 1/2	s P i n	N O B P £ n	• •	N o s Pin	o s p i n	K o s p i i n	12 1/ 13 1/ 13 3/ 14 3/ 14 1/		1/2 _b 1/2 _b	1/2 1/2 1/2	^e 1 1/2 1 3/4
		Agai				Lo	ading	c			Vith								Loa	ding l	0					
Ailerons	<u> </u>	Full	nst .	1/3		N	eutral	L	1/3	1/3	VI CH	Full			Full	gainst	· 	1/3			Keutra	1			Wit	h i
Elevators	ט	n	D	2 u	Ū	ĸ	D (a)	D (a)	υ (a)	ប (a)	u	N (t)	(2)	1) 25°	U (p)	N (p,q)	D (q)	2 3	Ū	¥ (a,)		D (a)	D (a)	U	ĸ	D
a, deg	36	51	60	36		40	42	-	31	_	53 -				34,43					34,4	5	1414				
Ø, deg	0.50	: 도 용	0.50	8b 0.47	_	50	50		- 1	4	20		<u> </u>		100	_	368	80		2		10		↓	_	-
V, fps	264	215	199	252	M o	0.51 252	0.54	, M	270		224	304		N	0.38			_	_	0.4	_	0.39	-	 		
Turns for	12 3/4 14 3/4 18 11 1/2 11 3/4 11 3/4		^E 2 1/2 ^E 2 3/4 ^E 3 1/2		a P		6	s p i n	1 2 1/	s p i n	56 80 1/2 50 1/4 50 1/4 62 1/4 62 1/4	2 2	21 1/2 11 1/2 11 1/2		277		227		> 258 81/4 81/4	r >	1 1/2	s a/l	>267 C _{1/4} C _{1/4}	1/2	a _{1/2}	
					Load	iing A	, modi	ficat	ion A									Los	ding	A, 180	dificat	ion B				
Ailerons		Agains	it		Neu	tral		1/3		Y.	th Full				Age	inst		n	eutra	1	1/3	1	With	rull	_	
Elevators	σ	N	ם	ŭ		ĸ	D	U		U	K	T	D	ប	N	D (a)	D (a)	บ	I	D	U		U	H		D
a, deg ø, deg fl, rps V, fps Turns for recovery	R o s p i	N o s p i n	41 60 0.40 277 1 1/ 1 3/	s p		л о в р 1	N o s p i	931 0.31 277 > 3 > 3		55 40 0.38 245 4 1/2 5	24 0.6 23 > 4 1 > 5	10 14 7	21 18p 0.70 277 > 3 > 4	K o s p 1	N c s p i n	31, ¼ 0.64 200	N O B P i n	M o s p i	0 8 P	й 0 1 1 1	18, 45 7D, 60 0.41 304	0	52 20 .41 246	80 0.60 334	2	26 60 0.64 349

⁸Two conditions possible.

NACA

 $^{^{\}mathrm{b}}$ Recovery attempted by neutralization of the allerons.

^CModel recovers in an inverted dive.

 $[\]hat{\mathbf{d}}_{\mathbf{Model}}$ oscillatory in pitch.

eRecovery attempted by neutralization of the elevators.

fRecovery attempted by simultaneous reversal of rudder and elevators.

SRecovery attempted by simulatenous neutralization of the rudder and ailerons.

hRecovery attempted by simultaneous neutralization of elevators and ailerons.

Recovery attempted by simultaneous reversal of the rudder and movement of silerons full against the spin.

Recovery attempted by reversal of the rudder from full with to 2/3 against the spin. Myon recovery, model goes into an inverted spin.

Upon recovery, model goes into a spin in opposite direction.

mRecovery attempted by simultaneous reversal of rudder and elevators and movement of allerons full with the spin.

naccovery attempted by simultaneous reversal of the rudder and movement of the ailerons full with the spin.

ORecovery attempted by simultaneous neutralization of the ailerons and reversal of the rudder.

Pwandering spin.

Model oscillates in roll, pitch, and yaw.

^rVisual estimate.

SRecovery attempted before model reached final steeper attitude.

^tSteep apin.

CHART 6.- SPIN DATA OBTAINED WITH MODEL 6 - Concluded

					Load	ing A	А, ш	odific	ation	С								Loadi	ng D, 1	modifi	cation	A .			- 22	
Ailerons		Agai			Neu			1		Wit	h				A	gainst	;			Neut	ral			Wi	th	
Allerons		Agai	1ST		Neu	trail		1/3	3		Full				Full			1/3								
Elevators	Ū	N	1	.	U	N	D	U		U .	n	D.		U	N		D	<u>왕</u> 3	U	N		Ð	Ū	N		Þ
a, deg	n	N	59	9	N	N	N	43		51	43	19,	33		48	5	3	38		3	7		47			
ø, deg	0	0	30	, 60	0	0	D.	6⊅,		0	30	20,			0,110	2	U	7U		1			0,110			
Ω, rps	8			.51	8	в	s	0.		. 45	0.50			250	0.36		38	0.32	200	0.		200	0.31			300
V, fps	P	р	اًا	215	P	P	P	26	07 2	45	277	27	4 ;	350	258	2	27	297	>300	- 2	90 >	300	246		-	300
Turns for	i n	i	6	1/2	i	i	i n	J>5	1/2	•	00	•	,	1/4	•	>		3/4	1/4	1	/2	1/4	1 1/1	٠	-	1/4
recovery	n	"			"	"	11	³ >7		•	•	"	,	1/4	-	>	8	3/4	1/4	3	/4	±/+	1 1/2	2		1/4
			'		Load	ing I	D, 150	odific	ation	В										Loadi	ng D,	modifi	cation	·c	,	
			Age	inst								Neutra			With		Agai	nst				Neutra			With	
Ailerons			Ful	11		1,	/3					Neutra	4		With			Fu11		1/3		Neutra	.1.		With	
Elevators	25° U	t	,	N	D	골 3	1	25° (P)	U (p)	N	N	D	D	U	N	D	U	N	D	<u>2</u> U 3	υ	N	ם	G	N	D
α, deg	N	33	3	43 55					34 41	36 44			N	23 41				45 80	48 80				47			
ø, deg		41	,	36					4 т 6D	10 70			8	1.4U 8D				150 150	55D 500				10			
Ω, rps	P	0.	.35	0.36					0.40	0.45			P	0.41				σ.44	0.54				0.42			
V, fps	i n	33	37	227	221	33	36	283	313	252		283	i	270	395	395	>300	212	215	>300	>300	>300	240	>300	>300	>300
Turns		r		-	•	jr	4	-, .	^r 1/2	80	rt 1/2			su 1 ·	1 1/4	⁸⁰ 1/4	1/2	-	•	^j 1/2	1/2	1/2	1/4	1 1/2	3/4	1/2
for recovery		r ₂		•	•	jr	•		r ₃	**	rt _{1/2}			an J	s ₁	sc _{1/2}	3/4	-		^j 1/2	1/2	3/4	1/4	2 1/4	1	3/4

^CModel recovers in an inverted dive.

 $[\]ensuremath{\mathrm{J}_{\mathrm{Recovery}}}$ attempted by reversal of the rudder from full with to 2/3 against the spin.

PWandering spin.

TVisual observation.

Recovery attempted before model reached final altitude.

^tSteep spin.

[&]quot;Upon recovery model goes into a wide spiral.

CHART 7 .- SPIN DATA OBTAINED WITH MODEL 7

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in clean

	_					conditio	n; r1/	tht er	ect ap	7.218-1															_
											Loadin	g A, s	ingl	e verti	cal tail										
								Age	inst			•										With			_
Ailerons			Full		\perp	2/3	1/2				1/3		\Box	1/	4		Neutz	al	[1/3	\prod		Full		_
Elevators	,	ı Ì	M	ם	-	N 3	/5 U	n	2/3 U	-	1/5 ប	H	-	1/5	H	0	×	ם	Ì	2/3		ម	X		D
α,deg ø,deg	Ţ	N .	N	N o	T	R o	N	N	N	\top	M	N O		N	N	N.	N	N		N	Π	N O	N O		K
f,rps V,fps	1		e P I	g p u		s 1	s P	s P	8 p 1		s p i n	S		8 P 1	S P 1	S P I	8 2	S P 1		9 1	1	s P	S P I		s
*,1Ps	,	i	'n	ñ		n	i	'n	ā		ñ	. ñ		•	ñ	ñ	i	å		ń		î	ň		ñ
				<u>.</u>																					
					Los	ding A,	nodif	cation	1 A								Losdi;	gB,≡	od1fi	cation	В				
			A	gainst					_	Г	Wi	th			A	ainst							W11	h	
Ailerons			Full			1/3		Neutr	81	1/3		Full			Fu	1_		1/3	<u>'</u>	ieutra	1	1/3		Full	
Elevators	ប	n		(a)) (a)	2/3 U	U	N	D	2/3 U	ט	H	D	(a)	υ (a)	F	D	2/3	ŭ	N	ם	2/3	Ū	N	ŀ
a,deg	N	81		70	N	77	N	N	И	N	N o	N	N	81	, ii	N	N	N	N	M	H	Ħ	N	N C	1
ø,deg	8	0		න	8	10	8	s	s	8	s		8	107	J š	В	8	8	8	s	a	s		s	ľ
Ω,rps	P	0.33		0.26	9	0.26	p	p	P	p	1	S P i	i	0.36	?	P	1	·p	1	p 1	p 1	P	9	P	1
V,fps	ū	186	\dashv	186	'n	192	'n	i	'n	n	'n	n	'n	. 198	_ ñ	l n	'n	n	n	1	n	n	n	1	1
] .																	İ

arwo types of spin.

CO

5

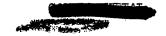
CHART 8.- SPIN DATA OBTAINED WITH MODEL 8

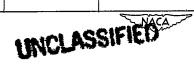
Model launched erect with spinning rotation to right, rudder full right, indicated controls reversed

Loading	. Modifi- cation	Elevator setting prior to movement if any	Aileron setting	Description of model motion before control reversel	Flight path after full rudder reversal	Flight path after simultaneous full reversal of rudder and elevator	Flight path after full elevator reversal
A	None	Full up	Full against	Extremely oscillatory; alternate rolling and yawing motion	Made from 1/4 to 3/4 of a turn and went into stalled glide	Made from 1/4 to 1/2 of a turn and went into steep glide or dive	Made 1/4 of a turn and went into steep glide or dive
A	-do-	do	Neutral	Very oscillatory, inner wing dropped and model yawed into spin	Made from 1/4 to 1/2 of a turn and went into stalled glide	Made 1/4 of a turn and went into steep glide or inverted spin	Made from 1/4 to 1 turn and went into steep glide or dive
A	-do-	do	Full with	Extremely oscillatory; alternate rolling and yaving motion	Made 1/4 of a turn and went into a stalled glide	Made 1/4 of a turn and went into dive	Made from 1/4 to 1/2 of a turn and went into steep glide or dive
A	-do-	Neutral	Full against	Pitched and rolled onto back; went into left spin when launched with rudder against rotation			
A	-do-	do	Neutral	Very oscillatory, inner wing dropped and model yawed into spin	Made 1/4 of a turn and went into stalled glide		·
A	-do- ·	do	Full with	do	Made 1/4 to 1 turn and went into stalled glide		
A	-do-	Down (10°)	Full against	Pitched into dive	Pau		
Α .	-do-	do	Reutral	Extremely oscillatory; alternate rolling and yawing motions	Would probably have gone on its back after approx. 1-1/2 turns		·
A	-do-	do	Full with	do	Made 1/2 of a turn and rolled on back		· .
A		Full up	Full against	Stalled glide			
A		do	Neutral	do			Went into steep dive
A	A	do	Full with	do	'		Went into erect spin or inverted dive
A	A	Neutral	Full against	do			
A	, A	do	Neutral	do			
A	· A	do	Full with	do			l
A	٨	Down (10°)	Full against	Pitched into dive	·		
A	A	do	Neutral	Extremely oscillatory; alternate rolling and yawing motion	Made 1/4 turn and pitched into a dive	 ,	
A	A	do	Full with	do	/ :		
	В	Full up	Full with	Stalled spiral glide	Straight stalled glide approx. 1/4 turn after reversal		
A	В	do	Neutral	do	do		
Α .	В	do	Full against		do		
A	В	Neutral	Full with	Wandering, wide radius	Stalled glide 13 turns after reversal		
A	В	do	Neutral	do	Stalled glide 3/4 turn after reversal		'
	33	do	Full against	do	Stalled glide 1/2 turn after reversal		
A	18	Full down (20°)	Full with	Spin very oscillatory in pitch and yaw (made approx. 1 turn in flat attitude and 2 in steep attitude, then repeated)	Same as before reversal		
A	В	do	Neutral	Steep spin	Went into inverted stalled glide approx.		
A	В	do	.Full agginst	Went inverted	-		
3	None	Full up (30°)	Full against	Periodically pitched from a flat to a steep attitude	Steep glide, extremely oscillatory in roll and pitch		
В	-do-	do	Neutral	Stalled glide, extremely oscillatory in roll	Same as before reversal	ı	
35	-đo-	do	Full with	Spin very oscillatory in roll and pitch	Made 1/2 of a turn and went into stalled glide		
						•	

~ NACA ...

Loading	Moutfi- cation	Elevator setting prior to movement if any	Aileron setting	Description of model motion before control reversal	Flight path after full rudder reversal	Flight path after simultaneous full reversal of rudder and elevator	Flight path after full elevator reversal
В	None	Neutral	Full against	Rolled and pitched on back	Rolled into dive		
В	-do-	do	Neutral	Stalled glide, very oscil- latory in roll	Same as before reversal		
Э	-60-	do	Full with	do	do		
В	-do	Full down (10°)	Full against	Rolled and yawed into dive or onto back	Stalled glide, extremely oscillatory in roll		
B.	-do-	do	Neutral	Stalled glide, very oscil- latory in yaw and pitch	Stalled glide		
3	-do-	do	Full with	Stalled glide			
С	-do-	Full up	Full against	Stalled glide, extremely oscillatory in roll, pitch, and yew	Stalled glide, very oscillatory in roll; rotation stopped in l turn		
c	-do-	do	Neutral	do	Stalled glide, extremely oscillatory in roll; rotation stopped in 3/4 of a turn		
c	-do-	do	Full with	Stalled glide, extremely oscillatory in roll	Same as before reversal		
c	-do-	Neutral	Full against	đo	do		
c	-do-	do	Neutral	Steep dive	Stalled glide, very oscillatory in roll		
c	-đo-	do	Full with	Stalled glide	Same as before reversal		
c	- do-	Full down (10°)	Full against	Model yawed and pitched into steep dive	do		
с	-do-	do	Neutral	Steep glide, very oscilla- tory in roll	Stalled glide		
c	-do-	do	Full with	Stalled glide, sometimes dived into inverted position	Model went into dive		
ם	-do-	Full up (30°)	Full against	Stalled glide, extremely oscillatory in roll, yew, and pitch	Stalled glide, very oscillatory in roll		
ע	-do-	do	Meutrel.		do		
D	-do-	do	Full with	do	do		
Д	-do-	Neutral.	Full against	Model rolled and yawed into steep dive	Same as before reversal		
Φ .	-do-	do	Heutral	Moderately steep spin, very oscillatory in roll	Made 12 turns and went into steep stalled glide		
D	-do-	do	Full with	Stalled glide, yawed and banked	Stalled glide		
D	-do-	Full down (10°)	Full against	Rolled and yaved into steep dive	Dive	. 	
Ð	-do- '	do	Neutral	Very oscillatory spin, whipping motion in roll and yaw	Made more than 1 turn and went into dive		
ם	-do-		Full with	dc			
E	-ço-	Fullup	Full against	Violently oscillatory in 'roll, yaw, and pitch			
E	-do-	do	Neutral	Stalled glide, very oscil- latory in roll and yaw			
E	-do-	do	Full with	Stalled glide, very oscil- latory in roll			
E	-do-	Neutral	Full against	Pitched and rolled onto back			
E	-do-	60	Keutral	Stalled glide, very oscil- latory in roll, sometimes rolled onto back	. 		
B	-do-	do	Full with	Stalled glide, very oscil- latory in roll			
E	-do-	Full down	Full against	Rolled and pitched onto back			·
, В	-do-	do	Neutral	Rolled and pitched into vertical or inverted position			
B	-do-	do	Full with	Stalled glide, slightly oscillatory in roll			




NACA RM L50L29

CEART 8.- SPIN DATA OBTAINED WITH MODEL 8-CONTINUED

	cation	prior to movement if any	Aileron setting	Description of model motion before control reversal	Flight path after full rudder reversal	Flight path after simultaneous full reversal of rudder and elevator	Flight path after full elevator reversal
F	None	Full up (30°)	Full against	Stalled glide	Stalled glide, oscilla- tory in roll		 -
P	-do-	do	Neutral	dc	Same as before reversal		
F	-do-	do	Full with	do	Dive or stalled glide		
F	-do-	Neutral	Full against	Steep wandering and wery oscillatory spin with	Same as before reversal		
P	-do-	do	Keutral	whip do	Went into a steep dive in greater than $\mathbf{l}_{\mathrm{E}}^{1}$ turns		
F	-do-	do	Full with	do			
F	-40-	Full down (10°)	Full against	Steep spin, extremely wandering and oscillatory	Same as before reversal		F44
F	-do-	do	Neutral.	Steep wandering and oscil- latory spin with whip	Went into inverted dive	'	
F	-do-	do	Full with	0.0	Same as before reversal		
G	-do-	Full up	Full with	Stalled spiral glide		***	
G	-do-	do	Neutral	Stalled glide			
G	-do-	do	Full against	do			
G.	-do- ·	Neutral	Full with	Spiral dive			
G	-do-	do	Neutral	Made 1/2 turn, dived a short distance; motion is repeated	Same as before reversal	 ' '	 '
G	-go	do	Full against	Very oscillatory with wide radius; might be spin or spiral glide	Made 1/4 turn and glided (moderately steep)		
G	-do-	Full down (20°)	Full with	Wandering spin with large pitching oscillations; very steep	Made 1 to 2½ turns and went into inverted spins		
G.	-do-	do	Neutral	do	Same as before reversal	***	,
G	-do-	do	Full against	Pitched into inverted spin			
G.	A	Full up	Full with	Spirel glide			
o.	A	do	Neutral	00			
G .	Α.	do	Full egainst	do			
G	A	Neutral	Full with	00	Same as before reversal		
G	A	do	Neutral	do	do		
G	A	do	Full against	Wandering spin; one yaving oscillation per turn of spin	Made 1/2 turn and went into stalled glide	,	
G	A	Full down (20°)	Full with	Spiral dive	Made 1/4 turn and went into inverted dive		
G	A	do	Neutral	do	Made 3/4 turn and went into inverted dive		
G	A	do	Full against	Went into inverted spin			
н	None	Full up	Full with	Stalled glide			'
H	-do-	do	Neutral	do			
H	-đo-	do	Full against	do		,	
H	-do-	Neutral	Full with	Wide spiral glide oscilla- tory in pitch	Same as before reversal		
H	-đo-	do	Neutral	đo	do		、
H	-do-	do	Full against	-	Made 1/2 turn and dived		
н	-do- -	Full down (20°)	Full with	Spin, oscillatory in roll, pitch, and yaw			
H	-do-	do	Neutral .	Spin, oscillatory in pitch and yaw	do		
н	-do-	do	Full against	į -	Made 3/4 turn and went into stalled glide; or made 1/4 turn and went into steep inverted dive		

35

NACA RM L50L29

CEART 8.- SPIN DATA OBTAINED WITH MODEL 8-CONCLUDED

Loading	Modifi- ca'.iou	Elevator setting prior to movement if any	Aileron setting	Description of model motion before control reversal	Flight path after full rudder reversal	Flight path after simultaneous full reversal of rudder and elevator	Flight path after full elevator reversal
1	None	Full up	Full with	Went into a stalled glide			
I	-do-	co	Neutral				
1	-do-	do	Full against	ab			
1	-do-	Neutral	Full with	Steep spin	Same as before reversal		
ı	-do-	do	Neutral	do	do		
1	-do-	do	Full.	co	Dived out after approx.		
			against		1 turn		
		Asya			·		
					,		
					1	/	NACA

CHART 9 .- SPIN DATA OBTAINED WITH MODEL 9

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in the clean condition with the landing gear extended and stabilizer setting zero and recoveries were] attempted by rapid full rudder reversal: right erect spins

	-			8.1	temp	ed by	rapid	rui	L Fuo	der re	versa	L: TIE	int er	ect s	pins												
				Loadin	g A			_				Loadi	ng B							·	,	Load	ing (;			
Ailerons	A	gainst		Neutr	9.1		With		Aga	inst		Neutr	a 1		With			Agai	nst			Neu	tral			With	
Elevators	(a		U (a			D (2)	Մ (a)	D (c)	U (a)		N I		U ad)	D (sd)	U (f)		N	D (f)	t)		N (a)	D (a)	U (f)	N	D (a)
α, deg		_	-		7		_		_	ļ -	ΙΞ		- N	_			-		-	-		- -	-			-	
Ø, deg	-		+-	+-		·		-	-		<u> </u>	+	<u>-</u> °	⊢		<u></u>	-	_	-	-	┼:		-	-	-	-	-
Ω, rps V, fps	> 2		> 2		+5	ر دا ه			>245	>245	>24	_		-		> 245	> 24	*	-	245	> 24	_	245	> 245	>245	-	>245
Turns for recovery	١.	-	-	b m	- 1			-	m 2 <u>1</u>	e_	-		- n	Г			II. 2	•	-	m 2 <u>1</u>	n 2	<u>1</u>	n 2 <u>1</u>	m 2 <u>1</u>	n 2 1/2	-	n 21/4
			L	oading	D							Load	ing E									L	adin	g F			
Ailerors	À	gainst	N	eutral		,W:	lth		Ag	ainst		N	eutra]			With			Agai	nst		Ne	utra	1		With	
Elevators	Ţ (f	ים ו	U (f)	N (a)	D (a)	(f)	D (a)	Ų (f		D (ag)	D (g)	U (1)	N (f)	D (a	U (f)	N	D (a)	U (f)) (1		D	ប (f)	N (f)	D (f)	Ū	И	D (f)
a, deg	Ŀ	28		-	-		<u> </u>	Ŀ	Œ	-	58	-		-	<u> </u>	\Box	-	-	_	-	53	-	-	ļ <u>-</u>	43	38	
Ø, deg	-:			-		<u> -</u>	-	<u> </u>	+-	-	10 0.53	-	=	-	 -	╀	-	-	H		2D	-	<u>-</u>	+-	0.66	0.80	 -<u>-</u>
V, fps	>51			>245	>245			>24	5 -	>245	89	>245	>245	>24		5 -	>245	>245	+					>245	147	169	>245
Turns for recovery	m 2	<u>1</u> 3	m 2½	ш 5 <mark>†</mark>	n 24	m 2	n 21	па	2 -	-	-	ш 5 <mark>5</mark>	n 2 <u>1</u>	m 2	m S	1 -	m 2 1	m 22	l m 2	2	-	m 2 <u>3</u>	R 2	m 2 2	*	-	m 2½
			L	oading	G			Ī			1	oadin	д Н	-								Lond	ing I				
Ailerons	Ag	ainst		Neutra:	1	•	With		Aga	inst		Neut	ral		W	1th		,	Agair	ast			Neutz	al,		With	
Elevators	U	D (1)	บ (a)	N (a)	D (a		U I)	U (f)	מ	(j)) (D fj)	(j)	D (i		(B)	n) (1)	N (1)	D	U				N	D (a)
a, deg	N	-	-	-	Γ-	-+-	43 1	5 -	_	69	-			-	39	_		-	И	-	67	-	_	_	59 49 20 11		_
Ø, deg Ω, rps	8	-	-	 -	 		1D 88.6	, ├-	-	0.72	-		- -	-	0.57			-	8	-	0.78	_	_				
V, fps	P	> 245	> 245	>245	>54	.5	147	? [245	116	>245	>2	45 >	245	184	>24	5 >	245	p i	184	122	20	2 1	55 1 ¹	+5 15	184	>245
Turns for recovery	n	m 22 .	ш 2 1	#5 <u>†</u>	< 2	14	8		5 7	₩,	II 2	m.	21 1	2 2 <u>2</u>	n 21	>	2	-	n	3 4	•		8 -		* *	•	-
		leadin		oading of sta		er 30	o down	1	le	ading	edge (Load of sta	ing C	er 30	O down	· ·	Τ,	.eadin	g ed	Lo ge of	ading	F	r 30°	down	ing	ding I edge	
Ailerons	Ag	ainst	Ne	utral		W:	Lth	,	gain			utral			Wit		Ag	ainst		Ne	utral			With		Agains	
Elevators	Ū	D (c)	U	N (c		υ	D	Ī		D c)	ប (c)	N (c)	D (c)		บ (a)	D (c)	U	N		U (k)	N (f)	D	ī	J ;	ט ס	N	Ď
α, deg	N		-		\Box	59	59	- [-	-	-	-	F	7		-	N		N	-		 - -			54 N	N -	-
ø, deg	1	<u> </u>	 -	 -	_	3D	SD			-	-		┼÷	-	-	- -	4	-	· -	-	-	1-	0.	_	3D °	! ⊢	-
N, rps	p 1	-	+ -	+-	۳	.57 87	0.77 87	- ;	\vdash	-	-	- -	+=	٦,	245	-	p		8 2 1		>245	>245	_		/2 s 24 p	1	191
Turns for recovery	'n	h ₅	-	h	5			7		h5	h <u>i</u>	hļ	h	,	n 21	h	i n		<u> </u>	21	ш 5 <mark>7</mark>	-		-	n n	i -	>6글
		1		rudder		nst s		!			Γ΄	le	ading	edge	Losdi of st	abili	zer 3	00 do	va.			••-			<u> </u>		
Ailerons		Against	- 1	<u>anding</u> Ne	utral		ic tea	W:	th.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	gairs			ng gee Neutr		racte		ith					~~	,MA	سر 🕰	
Elevators	U	N	D U	N		D	U		N	D (a)	U	N D	D (1)		U	D	. 0		N	E	,						
a, deg	N	N	- N		_	-	-	F	-	-		o o n nt	-	_	40		64	-	-	65							
Ø, deg		l 	- - °	1 -		-		-	-	- -	1 .	B B	 -		2D 72	-	0.68		- 77	0.84	_						
V, fps	P	q i	27 i		-	149	160	+		> 245		P P	17		16	-	160		42	136	_						
Turns for recovery	n		- "			<u>-</u> ·	-		-	-		n n	he		h ₆	-	•		a	•					•		
BSteep sp:	<u>-</u> -							-	}				hune		unahad					-	_						

bRecovery attempted before model reached final steeper attitude

CModerately steep spin with increasing radius.

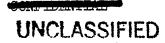
dModel attitude did not change after rudder reversal.

eslow recovery.

fSteep spin with increasing radius.

Two types of spin.

hwhen launched in a flat attitude with the rudder against the rotation, the model ceased rotating after indicated number of turns.


Steep spin with small radius.

JWandering spin, rate of rotation varies.

kWide radius of spin

Two conditions possible.

The model recovered in less turns than indicated.

CHART 10 .- SPIN DATA OBTAINED WITH MODEL 10

[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in the clean condition and recoveries were attempted by rapid full rudder reversal, propellers off except] where indicated

						I	oading A	, left er	ect spins							
441				Aga		In	, ,	/			Neutral		•		With	
Ailerons	 	Full		1/2	1	/3 1 	1	./4 	1	1			,			- T _
Elevators	ū	N (a)	(a)	(a)	2 3 (b)	2/3 U (a)(b)	(p)	(b)	(b)	(a)(b)	(p)	N (a)(b)	D	(a		D
α, deg	N	68 82	69 71			74 85			N .	72 72		48 72			76	
Ø, deg	°	7D 3U	71 50			3n 90			О В	70. S0		3D		-	3D	
Ω, rps	p	0.71	0.59			0.78		0.61	p i	0.41	0.55	0.54	1		56	
V, fpa	n	182	191	196	>304	196	>304	199	_ n	262	199	274	>3	U4 2	10 >3	04 >304
Turns for recovery		c ₅ ^{ss} c _{7 1/2}	a	-	d,e 1 d,e 1 1/2	f 1/2 f >5 1/2 g 0	đ ₃	-		1 1 1/2	h ss	^h 1 1/2	d₁ 1, d₂	/2		d ₁ d ₁
			!	- 				, right er	ect spins		·					Í
			Agair	nst				Weutral					Wit	h		
Ailerons		Ful	1		1/3			eucran.			1/3				Pull	
Elevators	σ	N		(1)(a)	<u>₹</u> 0	τ		N (a)	D	(p)	,	2 3 (៦)	υ		Ħ	σ.
a, deg				61 89				42 50			-	57 63				
ø, deg	N o			15D 100				7D 6U			-	20 20				
û, rps	<u>.</u>	0.	72	0.52				0.55				0.52	0.	1.3		201
V, fpa	p i n	1	.88	188	> 304	>3	38	274	>370	>33	2	544	, ,	44	>304	> 3014
Turns for recovery		,		20	d,e _{3/4} d,e _{1 1/2}	. a ₁	./2 å ₁	2	đ _ģ ^đ 3 3/4	đ,e,	2	e _m		- 1	a ₂ l _{2 1/2}	d _{3/4}
		Loading propelle	A, lef	t spins h = 30°					Load fl	ing A, ri aps defle	ight ere	t spins, down	, stabi	lity		
	Agains	t'		With			Agair	nst							With	
Ailerons	1/3		1/3		Full		F	full		1/3		Neutral		1/3		
Elevators	<u>2</u> v	2 3 (t	U) (2 U a)(b)	U (a)	ľ	N (a)(j)	D (a)(b)	D (a)(b)	2 u	U	d	N k)	2 3 (a)	υ	(k)
a, deg				40 . 57	40 48		70 86	64 79	50 57					40 48		
Ø, deg	N	1		න 70	0 50	N O	3D 40	120 80	3n 74D		3			#D #D		
û, rps	s p	1		0.33	0.30	. s	0.45	0.52	0.45	0.40				0.36	0.40	0.42
V, fps	i		!] ⁻	241	244	p i n	177	199	233	227			340	280	262	> 370
Turns for recovery					2 3/4	-	>5 ••	•	5	e _{1 1/4} e _{1 1/2}	.	i	\13 \3	>1 1/2 > 3	>3 1/2 >6	>2 >3

^{*}Oscillatory spin; range of values or average value given.

bTwo conditions possible.

^QRecovery attempted by simultaneous reversal of rudders to full against the spin and stick to longitudinally full back.

 $^{^{}m d}$ Recovery attempted before final steep attitude.

 $^{^{\}mathrm{e}}$ Recovery attempted by reversing rudders to 2/3 against the spin.

Recovery attempted by simultaneous reversal of rudders to full against the spin and of stick to longitudally full back and laterally full against the spin.

^{*}Recovery attempted by simultaneous reversal of rudders to full against the spin and of stick longitudinally forward and laterally full with the spin.

hvisual estimate.

ⁱWide radius spin.

Wandering spin.

k Steep spin.

Model recovers in a steep dive.

CHART 11.- SPIN DATA OBTAINED WITH MODEL 11

[Unless otherwise indicated, steady,spin data are for rudder-with spins of the model in the clean condition and recoveries were attempted by rapid full rudder reversal, elevator U, N, and D signifies stick positions of back, neutral, and forward, right erect spins]

			L	oading	A, r	udder: spin	;			•			Los	ding	A						Load	ing	A, f	laps	down	1 45°		
Ailerons	Ag	ainst		Ne	utral			With		A	gairs	t		Neutr	al		With		A	gains			Neut	ral			With	
Elevators	υ (a)	N (a.)	D (a)	Մ (ъ)	(p)	(p)	U (c)	N (c)	D (c)	U (a)	N (a)	D (a)	U (d)	(d)	(P)	(b)	И (р)	(p)	υ	N	D (a)	_	บ (đg)	N (d	(a)	(p)	N	(b
a, deg	-	-	-	-		-	-		-	-	-	-	82	86	83		<u> </u>	-	90	90	81	84	88	86	$\overline{}$	-	-	_
ø, deg		-	-	-	-	-	-	-	-	-	_	-	30U	39D	32D 29U	-	-	-	5U	6 U	36D 50U	-		8D 11U		_	-	
Ω, rps V, fps	- 4	-	- ,	-	-	-	-	_	-		-	=	0.13	121	0.10			-	0. <i>6</i> 9 107	0.04	0,22	118	0.36 118	015			-	H
Turns for recovery	_	_	_	_	_	_	-	-	_		-	-	e []]	e1 4	e3 4	_	_	-									_	_
															4									_				
			٠ .	Los	ding	В							Los	ding	c	•						,	.oad:	ing i	D			
Ailerons	A	gains	t	Ne	eutra]	L		With		- 1	gains	t	N	utra	l '		With		A	gains	t		Neut	ral			Wit	h h
Elevators	Մ (a)	N	D (a)	Ü (a)	N (a)	D (a)	(ъ) Д	Ŋ	(p)	ປ (a)	n	D (a)	(g)	N	D (d)	Մ (Ծ)	N	(ъ)	U (a)	N	D (a)	(d)) (6		D	О (Ъ)	N	(t
α, deg		<u> </u>	<u> - </u>	_	-	-	-	-	-	-2	-	-	82	-	80	<u>-</u>	-	-	-	-	-	80	8	-	-	-	-	Ŀ
ø, deg	-	-	-	-	-	-	-	-	- ,	-	-	. -	33D 20U	_	30D 26U	-		-	· -	-	-	19D 24U	39	טפ	-	-	-	
Ω, rps	-	<u>-</u>	-		-	-	-	-	-	-	 -	-	118	-	0.12	-	 -	<u> -</u>	-	-	-	121	3 0.0		<u>-</u>	-	-	H
Turns for recovery	-	-		<u>-</u>		_			_	 _	-	-	e3 4	_	e ₁ 2	_	-	-	-	_	_	e3 4		\neg	_	_		Γ.
recovery													4		2											L	<u></u>	
				Loa	ding 1	E							Los	ding	F							1	Load	ing	G ———			
Ailerons	Ag	ainst	;		Teutra	1		With		1	gains	t	1	eutra	1		With	ı	Α	geins	t		Neu	tral		<u></u>	With	
Elevators	(a)	N	D (a)	U (a)	Ħ	D (a)	Մ (ъ)	n	Д (ъ)	(a)	N	D (a)	(a)	N	(d)	(b)	N	(b)		и (a)		U	N	D (g)	D (g)	U (h)	N (h)	(:
a, deg	-	-	 - -	-	-	-		-	-	-	-	-	76 22D		72 17D	┝╼	 -	-	-			56	57	42	61	-	┝	-
ø, deg	-	-	-	-	-	-	-	-	-	-	<u> -</u>	-	320		120	-	-	<u> </u>	-	-	-	3D	20	6U	TD	_	-	
Ω, rps	-	<u> -</u>	<u> -</u>	-	-	-	<u> </u>	-	-	-	-	+=	0.08	123	121	-	-	 -	┝	-			0.15 1 2 9	138	135	-	ŀ	H
V, fps Turns for	-	-	-		-	-	-						e ₁	e ₁	e ₁										£3 4			
recovery	-		-		<u> </u>	-	-	-	_	-	<u> -</u>	Ŀ	4	2	Ţ	_	_	_		-	-	2	4	>10	f1½		<u> </u>	Ľ
	<u> </u>			Load	ding I																			~	~~\ <u>\</u>	AC.	مستريد	_
Ailerons		Again	ıst	<u>'</u>	Neutra	ı.		With																				
Elevators	Ū	n	D	U	N	Д	U	К	D																			
a, deg		58	46	58	52	41	32	33	35	1																		
ø, deg		80	140	50	6U	120	¥U	6U	90																			
Ω, rps V, fps	0.39 123	0.3	ı		0.39 123	0.42 141	0.43 160	0.142 157	0.46 160								·											
Turns for recovery		>5					>21/2	>4 <u>1</u>																				

STwo types of spin.

Nose approximately 40° below horizontal.

181id around with large radius. Nose approximately 40° below horizontal. After a few turns nosed over and went into inverted dive.

^{**}Oscillated violently in pitch and roll. Rate of rotation decreased as the violence of the oscillations increased.

**Dinitial rotation stopped. Fuselage remained approximately horizontal.

**Clinitial rotation stopped. Model then began to rotate in opposite direction and oscillated violently in pitch and roll. Fate of rotation decreased as violence of the oscillations increased.

Discillated in roll.

Guscillated in roll.

**Fuselage remained approximately horizontal after rotation stopped in number of turns indicated.

**Fuselage remained approximately horizontal after rotation stopped in number of turns indicated.

Twodel nosed over into steep dive after rotation stopped in number of turns indicated.

CEART 11 .- SPIN DATA OBTAINED WITE MODEL 11 (CONCLUDED)

		Load	ing	A, 1	ndin	g con	ditio	n.		Lo	ading	A		Losdi flaps	ng /	i, m 45	° 1	.ced:	ing A		Load flap	ling a	1, 11 45°		i					ly ro		ng	
Ailerons		Agai	ıst		Neut	ral		Witl	1	Ма	lific A	atio	n	Modii A		tion)		ficat B	ion	Mod	ifica B	tion		Again	st		Хe	utre	ı]		W1t)	
Elevatora	(d)	и (a)	(d)	(a)	(d)	D (d)	(b)	N	D (b)	(g) Ω	(p)	(,		(a)	(g) N	(j		u j)	H (j)	D (k)	U (d)	N	D (k)	U (a)	(a)	[(8		ט	(q)	D (d)	υ (c)	(c)	р (ъ)
a, deg	83	80	68	82	89	76	-	-	-	-	-	Τ.	-	75	79	Γ-	Т	- [-	-	79	83	-	-	<u>l</u> -	Γ-	-	- [85	80	-	-	-
ø, deg	39D 51U	42D 48U	43.D 440	21D 25U	16D 230			-	-		-			16D 12U	21D 170			-	-	ľ	41D 260	5ช	-	_	-	-		-	360 31V	280 250	_	_	-
fi, rps	0.15	0.14	0.17	0.17	0.13	0.14		-	-	-	-	\Box	- 6	1. 0	. 11			- [-	-	0, 31	0.27	-	-		-	-	- 0	.07	0.10	-	_	-
V, fps	123	121	121	121	118	121	-	-	-	_ =	_		- [116	116	E			•		107	107	-	LΞ	Ξ	<u>-</u>	- 1	21	121	118	-	-	
Turns for recovery	>3 <u>1</u>	e <u>13</u>	>5	e ₁	e ₁	e3 4	-	-	-	-	-		.	e ₁ 1	e <u>1</u>	-		-	-	-	1 ₂ 3	12	-	-	-	-	. e	1 2	2 2	٠ <u>۶</u>	-	-	-
		Los	ling	A, =	rlibe	catio	n C	Τ	Losd	ng A	, 100	ific	ati	on D			Lo	ađi:	gΑ,	nodí	ficat	ion E	:		-l	Load	ding	g A,	mod:	fica	tion	F.	
Ailerons	/g	ains		Neu	ral	и	ith	A	ains		Neut	ral	Γ	With	:	Ą	gain	et		Neut	ral		With	-	Loading A, modifica Against Meutral					T	W	th	
Elevators	υ	N	D (a)	U N	(J)	U	N I			D a)	u n	, D	U	N	(m)	(a)	ĸ	(B)	(ŭ)	(g)	(g)	(p)	и	(B)	υ (a) (H a) (D a)	(n)	ų n) (1	3 ((i (i)	(g)
a, deg	<u>-</u>	٦	-	<u>- -</u>	<u> </u>	<u> - </u>		٠.	-	-	- -	- -	Ŀ		_]	-	-	76	80	Ŀ	LΞ	-	-	\equiv	= [-	Ξ	<u> </u>		<u>. </u>	<u>- ·</u>	·
ø, deg	-	-	-		_	-	- -	-	-	-		<u> </u> -	-	-	-	-	-	1	34D 190	34D 460	_		-	-	-	-	-	-	-	-	.	- -	-
Ω, rps	-	-	-	- -		<u> - </u>			-	<u>-</u> [<u>- [-</u>	<u> -</u>	<u> - </u>	-	-	-	•	—	0.14	-	Ŀ	-	-1	<u> </u>	\equiv	Ξ	Ξ		Ţ.	I	<u>- -</u>	<u>. L.</u>
V, fps	-	-	-	<u>- -</u>	-		ناد	-	-	- [<u>: -</u>	٠] -	-	-]			127	129	<u> </u>	<u> </u>	-	-	-	-	-		-		<u>. L</u>	- -	لتلا
Turns for recovery	-	-	-	- -	-	-	- -	-	-	-	- -	-	-	-	-	-	-	-	e3	e <u>1</u>	-	-	-	-	-	-	-	-	-	-	.	- -	
			L	oadiı	J	nodi	ficat	ion 0	<u> </u>		1		<u></u>	Los	dina	. A,	modi	fice	ation	H.	-							~	-Ñ	ĂČ/			
Ailerons		Aga	nst		N	eutra	1		Wii	:h	Τ	Ae	ain	st	Ī	1	Teuti	ral	Ţ	١	/ith												•
Elevators	Ū	,		D a)	ט	N	D (d)	U	N		n u		R	Į.		U	Ж	(d		U	М	(p)											
a, deg	-	Ì.	I	_		- 1	78	-	-	T	-	- 1	_	Τ.	T	-	-	8	1	-	- 1												
ø, deg	-	Ι.		-	-	-	12D 9U	-	-		-	-	-	-	1	-	-	20: 30:		-	-	-											
Ω, rps	-	1.	$\cdot \top$	-	-	-		-	-		-	-	•	T -		- 1	-		- -	-	-	-											
V, fps	Ξ	1:		-	Ξ	Ξ	121	Ξ	-	Γ	-	= [-			Ξ	-	12	ī	-	=	\equiv											
Turns for recovery	-	-		-	-	٠-	e ₃	-	-		-	-	-	.		-	-	6	3	-	-	-											

*Oscillated violently in pitch and roll. Rate of rotation decreased as the violence of the oscillations increased.

Dinitial rotation stopped. Bueslage remained approximately horizontal.

**Initial rotation stopped. Hodel then began to rotate in opposite direction and oscillated violently in pitch and roll. Rate of rotation decreased as violence of the oscillations increased.

Oscillated in roll.

**Function in rotation stopped. Builded forward rapidly with nose approximately 15° below horizontal.

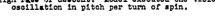
**Initial rotation stopped. Builded forward rapidly with nose approximately 15° below horizontal.

**Initial rotation stopped. Builded forward for a few feet 35° below horizontal and then nosed over into a steep dive.

**Initial rotation stopped. Glided forward for a few feet 35° below horizontal and then nosed over into a steep dive.

**Initial rotation stopped. Glided with slight rotation to right. Fuselage approximately horizontal. Oscillation in roll of approximately 125°.

CHART 12 .- SPIN DATA OBTAINED WITH MODEL 12


[Unless otherwise indicated, steady-spin data are for rudder-with spins of the model in the clean condition and recoveries were attempted by rapid full rudder reversal, elevator U, N, and D signifies stick positions of back, neutral, and forward, right erect spins]

	_				ılgn					sht a		neut	, L'B.1	and I	U.Waro	, rig	415	erect	brud		ing	A, 1	oft	spin	.8			
Ailerons			Agai	nst				Neut				w	ith		T	Agai	lns	t	,	ieut				-		.th		
Elevators	- (a)	1	N	N (bc)	D (c)	Free	ण (d)	N (d)	(d)	Free (c)	(d)	N	D (d)	Free (d)	U (a)	N (a)	D (c)	Free (c)	U (d)	N (d)	D (c)	Free (c)	(d)	N (d)	D (bd)	D (bi	Free (bd)	Free (b)
a, deg	90 74	9 5	5				74	91 71	76 58	73 62	88 62		27	83 57	82 54	24 55			66 54	86 69			73 62	97 64	74		79 52	:
ø, deg	60 80	17	-		N O	И	120 180	22U 5D	190 120	18g 7D	180 190		60 18	100 15D	100 60	2υ	N o	й,	90 120	130 150	N	N	12U 12D	190 240	100 7D		110 210	Ŋ
Ω, rps	0.19	+-			s P	s p i	0,19	0.21	0.26	0.20	0.20	0.13	0.23	0.21		0.11	2 p.1	p	0.13	0.11	s p	5	0.15	0.09	0.16	i	0.16	a p
V, fps	182	18	2		n	n	182	171	174	171	171	171	171	166	179	171	n	n	171	171	i n	i n	171	161	171	<u> </u>	185	n
Turns for recovery	•3 4	t I					•1	•1	81 <u>1</u>	<u>و1</u>	e <u>1</u> 2	f 1/2	gl	h11/2	f <u>l</u>	<u>.1</u> 2			약	<u>r</u> 1			<u>•≟</u>	• <u>1</u>	h1/2 h1		r Ž	
	t	sed he a atio	in c iler	onjun ons, : ween	tio L to	trim on wit olde orons	h flect	ion				ii 1 t	n con to he re Frimm	juncti defle dders	ion wi ection and t moves	th th rati he t up as	e ri o be	s used widers streen mers: jacent	•				th de th tr of	ed in e el eflec e el imme traili	A, win conjection revator record immer ng edg down.	atio b and Trail	on with on it on tweet the ling of as up a	i ige
Ailerons		ain		<u> </u>		With			-	zains	_			tral				W1		_	_	_	gain		Neut			l th
Elevators	۵) (ع)	_	Free (c)	(a)	- 1	D ab)	D (b1)	Free (a)	1 1	- 1-			N dk)	D	Free (j)	(q)	(ree (ab)	Fre			D c)	(c)	D (đ)	Մ (Ճ)	D (dl)
a, deg		N	N	94 63		78 59		71 56	N		§		81 71	N O	N o	65			¥ -	7 <u>4</u> 41	N	N		N N	N	60 87	92 54	92 53
Ø, deg		s P	a p	29 31		110 240		20 161	S p				10 430	s p	s p	12t				2Ų 1Ц1Д	s p	3 7		s p	s p 1	30 310	47D	23U 22D
Ω, rps		ñ	n	0.1	7 0	.18		0.17	15.1		1	-,	.08	ñ	ñ	0.12	0.			0.16	n	ñ		n	n	0.18	0.21	0.18
V, fps Turns				171	+	74		174 •1	-	Ì		<u> </u>	71			182	18	39	-	198						174	189	171
for recovery				• <u>1</u>		•1		* <u>2</u>				6	Î.			• <u>Ž</u>		2								h114	•1 <u>†</u>	r.3 4
					<u></u>			L	adin	g B							Ļ				_	Los	ding	C				
Ailerons	<u> </u>	-	gair		1_	_		_	utr		T_	_		Wit			\perp	Agai			<u> </u>		utra				With	
Elevators	(c)		D)	(pq)			ű j)	N (a)	D (32)	Fre (bd			(a)	(pq)	(pq)	free (dk)		u 1		Free (0)	(d) (a			Free (dl)	(d)	(d1)	Free (p)
α, deg				74 41				92 72		68 52	_		71 58	70	75 47	78 58		89 55			8' 3'			77 56	72 57	73 60	77 60	
Ø, deg	N O		N o	100 11D	N o	·	N 0	58ช 75D	N 0	160 9D			2D 3D	280 250	100 17D	170 251	3	500 250	9	N O B	30 30	30 5		22U 31D	130 70	20D 41D	320 320	
Ω, rps	p		p	0.11	P		_	0.09	p i	0.1	1 -	0	.17	0.16	0.15	0.18	3 0.	. 23 I	1	p i	0.:			.23	0.24	0.19	0.25	
V, fps	n		n	182	ľ	` '	"	182	n	182	┦ "	1	90	182	177	185	19	90 '	•	•	179	18	3 1	77	179	174	174	
Turns for recovery						-		• <u>1</u>		h ₁		0.	1 2	£3 4	t <u>s</u>	n ₂ n ₂ 1/2	ľ	- <u>3</u>			• <u>1</u>	f <u>l</u>	h	1	h <u>1</u>	• <u>1</u>	հ <u>յ 1</u>	

^aModel oscillatory in roll and pitch; range of values or average value given.

One went into an inverted spin after a short vertical dive.

Phigh rate of descent. Model executed one violent oscillation in pitch per turn of spin.

bTwo conditions possible.

CModel recovered by pitching and/or rolling out of the spin.
Motion during recovery was extremely violent.

doscillatory spin; range of values or average value given.

^{*}After recovery, model glided forward at a flat attitude for an appreciable distance before striking safety net.

*After recovery, model glided forward at a flat attitude for a short distance before striking safety net.

Safter recovery, model glided forward at a flat attitude for a short distance and then nosed down into a steep dive. hAfter recovery model nosed down into a steep dive.

imodel too oscillatory in pitch and roll to test completely.

JMcdel yawed in a circle of extremely large radius at a high angle of attack. Rotational velocity was low.

kwendering spin.

¹ Model oscillates in pitch and wanders; appears to gallop.

Model recovered of its own accord in a wide spiral glide.

n Model recovered in a wide spiral glide.

CHART 12 .- SPIN DATA CHTAINED WITH MCDEL 12 (CONCLUDED)

							L	ading	ם													Load	ing E					
Ailerons		A	ei:	nst				Keut:	ral			7	71th				Agai	nst			Ħ	autra	1			Wit	ì	
Elevators	ប (c)	N (c)	Đ i	Free (bd)	Free (b)	υ (d)	N (d)	(d)	Free (bd)	Free (bd)	(d)	N (bd)		Free (br)	Free (bd)) (a)		Free (c)	(q) n	N (c)	D (bd)	D (bk)	Free (j)	(a)	(q)	D)	Proc
a, deg				57 41		73 21	85 48	49 39	73 50	52 37	75 63	81 ₄ 55	٠	76 43	44	95 47	81 65			98 68		93 64;			90 65	٠ ١	02 01	
ø, deg	N O	N		0 SS	N O		500 420		110 70	10 150		19Մ 14p		가 0	130 6d		35t 0 64t		N O	38d 48d	N	420 470		N o	21+D		90 40	K O
Ω, rps	s p		p (0.18	9 1	0.13	0.20	0.19	0.22	0.21	0.20	0.22		0.20	0.17	0.1	60.17	D.	8 p	0.18	s p	0.22		p	.16	0.130	.16	я р
V, fps	n		11	204	ñ	174	171	203	177	206	177	177		182	208	19	185	ñ	- n 1	182	'n	185		n	_	182	171	n
Turns for recovery						9 <u>1</u>	9 <u>1</u>	눤	hl	hl	• <u>3</u>	<u>1</u> 12 − 12 − 12 − 12 − 12 − 12 − 12 − 12		h111		e <u>1</u>	•1			°ı		e <u>Ž</u>			1 4	e ₁	2	
		Los	adin	g A,	flaps	down	45°			Load	ling A	, land	ing (ear e	rtende	d				Load	ing	A, la	nding	condi	tion			
Allerons		Net	ıtr	al	Τ	Wi	th				Neut	ral				Wi t	n	Age:	inst		1	Koutr	el			WI	h	
Elevators	(a)	7	rec bd	Pre)				Free (dl)	(dt)	D (dt)	D (ct)	Free (dt)		e Fr		,	res (d)	(1)	Free (d)	(ba	.)	(pd)	(d)	Free (d)	(d)	(d	P	res d)
a, deg	79 62		82 63				87 39	87 49	72 57	66 41		60 41	50 37			1	65 52		66 22			65 54	91 69	62 47	69 58			64 29
ø, deg		10U 25U 9U 5D 15U 11U 27D 18D 9D 5D 15U 10U 8D								10	31	,	8	D	3D	K O S	16t 20			14D	270 40d	90 30	20 15			130 150		
Ω, rps	0.2	1 0	0.19	<u> </u>		0	.17	0.19	0.20	0.19		0.19	0.2	3	o.	16	0.16	p	0.1	, 		0.14	0.09	0.16	0.1	6 0.	10 0	. 14
V, fos	179	;	179			1	79	179	185	198		182	203	.	- 19	5	193	n	198		:	170	171	188	179	170	.	88
Turns for recovery	h,	1	h <u>3</u>		·-		13 4	h <u>3</u>	hu <u>3</u>	hul Ž	ļ	hu2			h	21	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		h <u>1</u>			8 <u>1</u>	e <u>1</u>	հս <u>1</u> 2	£1	hu		hu <u>l</u>

Spodel oscillatory in roll and pitch, range of values or average value given.

Umodel pitched into am inverted flat attitude after short vertical dive.

Two conditions possible.

[&]quot;Model recovered by pitching and for rolling out of the spin. Motion during recovery was extremely violent.

doscillatory spin, range of values or average value given.

Office recovery, model glided forward at a flat attitude for an appreciable distance before striking safety net.

After recovery, model glided forward at a flat attitude for a short distance before striking safety net.

Eafter recovery, model glided forward at a flat attitude for a short distance, and then nosed down into a steep dive.

hafter recovery model nosed down into a steep dive.

Model too oscillatory in pitch and roll to test completely. indel yawed in a circle of extremely large radius at a high angle of attack. Rotational velocity was low.

Wandering spin.

[&]quot;Model oscillates in pitch and wanders; appears to gallop.

q yodel oscillatory in pitch and roll, too wandering to test.

^{*}Model oscillatory in pitch and appears to gallop; range of values or average value given.

*Model spins steeply and smoothly with radius of spin too large to test.

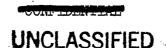

t Three conditions possible.

CHART 13.- INVERTED SPINNING CHARACTERISTICS OF THOSE MODELS FOR WHICH INVERTED SPIN TESTS WERE PERFORMED

[Model loadings as shown on table II, clean condition inverted spins performed with models spinning to pilot's right, rudder full with the direction of spinning rotation, recovery attempted by reversing rudder full against the spin, no modifications on models]

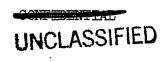
					М	odel	1,	loadi	ng /	١.				М	iode l	2,	load	ling A				Мо	del	4,	load	ing	A			Mode	1 5,	load	ing A	
Ailerons	1	gai	nst			Neur	ral			Wi	th		Aga	inst		Neut	ral	14	ith		Age	inst	Ne	nıtr	al	Wi	th	Aga	inst		Же	utra:	1.	With
Elevators	υ	N	D		U	()		D	U		N	D (a)	U	D	U	n	D	(a)	N (e)	D	Ū	N E	U	N	D	U	N D		ਰ) ਹ	(d		(q) N,	D (a)	(d)
a, deg	N	N	76	_	47	1	2	52	7	•	55		· N	N O	N		N	46 17		N		N N		N			N -	<u> </u>	55 66	5	8	54 62	50 61	5
Ø, deg Ω, rps	. s	S	3U		2U 0.36	4_	U 42	50 0.49	0.	υ 50	4U 0.47		s	s P	, s		s p	60 70 0.30		s p		2 0		8			<u>-</u>		40 100 0.33			50 40 0.35	20 60 0.36	51 81
V, fps	i n	p i n	15		227	2		173	17		193		i	i	p i n	p i n	i	229	Н	1		p p i i n n		p i n	p i n		i -	 	203	22	-	200	191	21
Turns for recovery					ъ	. 1	,	2			c							-	80								-		1/2	1/2 3/4	, 1	3/4	f _{3/4} f _{3/4}	1/
					Mod	el 6	, 10	oadin	g B				Π					Мо	del 7	, 1	oadi	ng A							м	ođel	8, L	oadi	g G	
Ailerons	A	gair	nst		Neut	ral	1/3	-	Wit	h Ful	ı		-	Ful:		inst		1	_ N	eutr	al	F	호	W	ith	Pu,1.1		Ae	gains	t	,	Neutr	al	Wit
Elevators	υ	N	I	ם כ	N	מ	U	U			R	D	U	1	N	p)	3 _U	2 3D	U (ik)	N (ik	D (n	1.5		30	υ, (1)	N	D	U (-)	li .	D	ָט	N	D.	D
a, deg	N	N	1				N	50	,		¥6		82	7	8	(1)	76	(h) N	N O	N O	N	N	Τ.	h) (K o	N O	K o	(n) N o	(m) (m)	(n.) (<u>(o)</u> -	(m) N	(m)	(g) N
ø, deg	5	a		s	s	8	8	4D			30		140) 11	D	в	14D	s	8	8	B	8		.	8	8	8	В	8	s	-	8	0 8	8
Ω, rps	i n	i n		1 1	1	1	i n	0.4			.48	0.50	+		.40	ı ı	037	- , ·	p i n	p 1 n	i i	11	- 1 :	p	1	p i n	p i n	P i n	p i n	p 1	-	p i n	p i n	p i n
V, fps Turns for recovery								221 21, 2 81, 8 3/4, 82, 3/4,	1 2 1, 3/4	4, 81, 3/4	33 4, 3 , 3/	252 3/1 1 1/2	186		86 1		1 210								. !						- q 1/4		-	
	_	N/	200	1.10	, 10	edin		3/4,	12		1출 Vode	1 11	load:	ing A	i	Ì	-	1_	<u> </u>		1		Т.	1	(ode	1 10	1 10	ading	Δ.			i		
Ailerons	A	gair		-	Neut		·	th	Age	ains			utral	$\dot{\overline{}}$		th	+	Agai	ıst	7					utra		,		<u></u>			With		
Elevators		U (d)			N			U	U (o)	M (o)	D (o)	U (r)		D s)		N I		N D (u)(u			U (a)		I) (D v)(1	r)(d	D)(w)	D (w)	Free (d)	U (d)	N (d) (6	D 1)(x)	D (v)(x)	Fre
α, deg		47							٠-	-	-	- 8	35	82	-	- -	N o	N N	N		85 69		01 57	-		36 55	N	78 47	75 59	70	B 7	73 51	-	81 68
ø, deg		60 6d							-	-	-		10 10	8u 180	-	-	- в	8 S	5	Ι.	33U 25D	50	U (I)	-	1	25U 13D		450 42D	230	J 1	70 :	13U 14D] -	17
Ω, rps	app	rox.	25	io	19		+	.58	-	-	-		- 1	0.07		<u>- -</u>	- p	p p i i n n	i n	I.	0.1	<u> </u>	. 18 32	-	_	0.18 174	1	0.17	17			176	∤ :	17
Turns for	f,	1-1/		1				> 3			1	f, 1/!	-	', ^t ,	1					-		4 У1		-	f,				1/2	у,	+	1-1/2	-	1
recovery Model oscil Model went	late	ory	in	pite	h.		1	> 5											<u> </u>											_	1			1-1
Model went Oscillatory Wandering s Visual esti Recovery at Model pulls Model pulls	interest out	o sp in; osci in in in	in ran lla by st	that ge (tor; net dive alle	of various var	in.	illa s or sion	of ()	age l) r long	valu udde itud	e gi	ven. d ail axis	erons	, (2)) ele	evat	or a	nd ail	er,on:						reve	sed	•			. ~	~N	ĮĄĆ,	مر رچي	
Model remai Model launc Went erect. Model immed Oscillated Increased r Came out in	ns in hed late viol	n a wit ly lent ing	rol ly osc	ide. udde led in p ills r ir	with oitch	ain ail and s ca	eron leron leron leron leron leron leron	pin. ns int ll. l mode and t	No to e	spin rect o go	pos int	sined ition o sta tch i	, pit lled :	ched glide lat i	into	o in	vert	ed pos	ition	ı, p	itcl	ied l	ack	int	o er	rect	posi	ition	and d	lived.				
Initial rot Oscillated Fuselage re Model recov Model too o Three condi	ation in in mair erections	on s coll ed by lat	app pi	ped; roxi tchi in	mate ng s	elag	e re	emaine zonta:	eda L.	ppro f st	ocima	tely wotio	horiz n dur	ontal	۱.					vio	lent	·•												

CEART 14.- RESULTS OF SPIN-RECOVERY PARACEUTE TESTS FOR MODELS

[Model in clean condition except where otherwise indicated; all results are for spin rotation to pilot's right, dimensions given are full-scale]

									Tur	ns for	recov	ery				
			Para-	F74		1				Eleva	tor					
Kodel	Attitude	Parachute location	diam-	length	ccef-	Loading	\vdash	Ŭ		2/31 Aile:		1		<u>D</u>		Hemarks
			eter (ft)	(200)	ficient		Age- inst	Neu- tral	With	1/3 155t	1/3 with	Neu- tral	With	Aga- inst	Neu- tral	
	Erect	Outboard wing	5.0	2.5	6.70	A.		-								Towline attached between pitch fla and elevon
	-do-	do	-đo-	15.0	-do-	do		1, 1 ¹ / ₂	60							Do.
	-do-	do	-đo-	30.0	-do-	do		1, 1 <u>2</u>	*			> 3	-			Do.
	-do-	do	7.0	2.5	-do-	do		3, ₩	00			3, 11 1	-			Do.
	-do-	do	-do-	15	-đo-	40		3, 12	•			1 <u>1</u> , 2	-			Do.
	-do-	do	-do-	30	-do-	do		12, 3	1 <u>1,</u> 2			$\frac{1}{2}$, $1\frac{1}{2}$				Do.
2	-do-	<u>-</u> do	8.8	2.5	-đo-	do		1, w	⁸ 3, ⁸ 9			$\frac{1}{2}$, $\frac{1}{2}$	-			Do.
•	-đo-	do	-do-	15	-do-	do		1, 1 1	1 <u>1</u> ,>2			$\frac{1}{4}$,1	1 ¹ / ₂ , 4			Do.
	-do-	do	-do-	30	-do-	do		1/2	1 <u>2</u>			$\frac{1}{2}$, $\frac{1}{4}$	1 <mark>1</mark> , 2			De.
	-do-	Outboard wing tip	7.0	10	-do-	do		1, 3 2, 4	1			1	1, 1			
	-do-	de	-đo-	30	-do-	do			1 1 ,1 <u>7</u>			1, 1	1, 1			**************************************
	-do-	do	5.0	10	-đo-	do		3, 1	2,3 <u>2</u>			1 <mark>2</mark> ,>3	•			
	-do-	dc	-do-	15	-do-			3, 1 <u>1</u>	•			2 > 3 ²	•			
	-do-	do	-do-	30	-do-	~-do		<u>.</u> 1년	2,>83			1, > 2				
	-do-	Outboard wing tip	¥.0	19.50	-do-	E			3, 3½							25-percent semispan slats extend
	-đo-	đó	-do-	9.75	-do-	do			3 <mark>1</mark> , 4							Do.
	-do-	do	5.33	19.50	-do-	do			$2\frac{1}{4}, 3\frac{1}{2}$							Da.
	-do-	40	-10-	9.75	-ào-	do			23,31 24,32							Do.
	-do-	do	6.67	19.50	-¢o-	do			꼇							Do.
	-do-	đo	-do-	9.75	-do-	do			칼							Do.
4	-do-	do	8.0	-đo-	-đơ-	do			11							Do.
-	Inverted	do	6.67	19.50	-go-	do	1 <u>1</u> ,1 <u>1</u>									Do.
	-do-	do	8.0	19.50	-do-	do	1, 1½									Do.
	Erect	do	5.60	-go-	-do-	9 q			사,가 <u>;</u>							Do.
	-do-	do	6.67	-đo-	-do-	do		1 <u>구</u> ,2뉴	1孝,2눝							Do.
	Inverted	do	-do-	-do-	-do-	do			3							Do.
: 	-do-	do	8.0	-đo-	-do-	do			2흡,2흡			13				Do. t
	Erect	do	4.24	25	0.83	A		1 2		1						
	-do-	Parachutes at both wing tips	4.39	-đo-	-do-	do				1,>2						Two parachutes opened simultaneously
5	-do-	do	7.31	-do-	0.70	do										
	-do-	do	8.77	-do-	-do-	do		후, 호		1, 3						
	Erect	Tail cone	8	13.4	0.7	A			2,2 2 , 4, >8							
	-do-	do	10	-40-	-do-	do		l	1,1½, 2½,3½							
b	-do-	do	11.7	-do-	-do-	do			1,1,1, 1 , 1							
	-do-	Outboard wing tip	3.3	7.9	-do-	do			×8,×9							
	-do-	de	5.0	-do-	-do-	do			2,2							
	-do-	do	6.2	-do-	-do-	do			1급, 1급 1-3/4							
	ــــــــــــــــــــــــــــــــــــــ	L	L	<u> </u>		نـــــا		L	1-1/4					لــــــا		NACA

CONTRACTOR


CHART 14.- RESULTS OF SPIN-RECOVERY PARACHUTE TESTS FOR MODELS - Concluded

		1	ł	ł	ı						r reco	very				
			Para-	Towline	Drag			u ·		2/3U	ator	N		ם	_	
Model	Attitude	Parachute location	diam- eter	length	coef- ficient	Loading				Aile		<u> </u>				Remarks
			(ft)				Aga- inst	Neu- tral	With	1/3 868- 188t	1/3 with	Neu- tral	With	Aga- inst	Neu- tral	
	Erect	Tail cone	3.6	27	0.70	A		1/2						*****		x/č = 0.14
	-đo-	do	-do-	-do-	-do-	do									$2\frac{1}{2}, 2\frac{3}{4}$	Do.
	-do-	do	4.5	-do-	-do-	do		3, 1								Do.
ļ	-do-	do	-do-	-do-	-do-	do									1 <u>1</u> ,1 <u>1</u>	Do.
	-do-	do	5.5	-do-	-do-	G		1, 2								Do.
. [-do-	do	-do-	≈đo-	-go-	do									1, 24	Do.
8	-do-	do	7.1	-do-	-do-	do		급, 급								Do.
Ĺ	-do-	do	-do-	-do-	-do-	do									14, 2	Do.
	-do-	do	-do-	-do-	-do-	do		1 2								x/c = 0.19
	-do-	do	-do-	13.5	-do-	do		1								x/c = 0.14
	-do-	do	-do-	-do-	-do-	do									1, 13	Do.
	-do-	do	-do-	-do-	-do-	do		•								x/c = 0.19
1	-do-	do	-do-	-do-	-do-	do									1, 3	Do.
,	-do-	Arresting gear mast (aft)	13.3	30	0.70	A				2	2 <u>1</u> ,31		-		>3	
[-do-	do	16.0	30	-do-	do	>7			1-3/4 >4-1/2	2, 24		2,∞			**************************************
	-do-	do	-do-	23	-đo-	do							•			
	-do-	do	-do-	15	-do-	do	≫						-			
. [-do-	do	20	30	-do-	do							4,=			
	-do-	do	20	15	-do-	do				`			3,4			
	-đo-	Arresting gear mast and outboard end of wing	ъ6.9 с _{13.3}	30 Q	-do-	do					23,13					Two parachutes ~ wing tip parachute attached at c/4
10	-do-	do	°6.9	-do- -do-	-đo-	đo					3, 3 ³					Do.
10	-do-	do	b_do- c8.0	6.6.	-do-	do					$2\frac{1}{2}, 3\frac{1}{4}$		ļ			Do.
	-do-	do	ъ-до- с10.6	-do- -do-	-do-	do					> 2 <u>1</u>					Do.
. [-do-	do	^b 13.3 ^c 6.9	-do- -do-	-do-	do					13,23					Do.
	-do-	do	c-qo-	-do- 8.0	-do-	do				12, 13						Do.
	-do-	do	b-do- c8.0	-do- 0	-do-	do					1, 1 <u>3</u>					Do.
	-do-	do	c-go-	-do- 3	-do-					1, 1 <mark>3</mark>	나, <u>날</u>		<u>1</u> , 8			Do.
	-do-	do	b-do- c11.2	-do 8							1, 2					Do.

Visual estimate.

bAttached to arresting gear mast.

CAttached to outboard wing tip at the c/4 line.

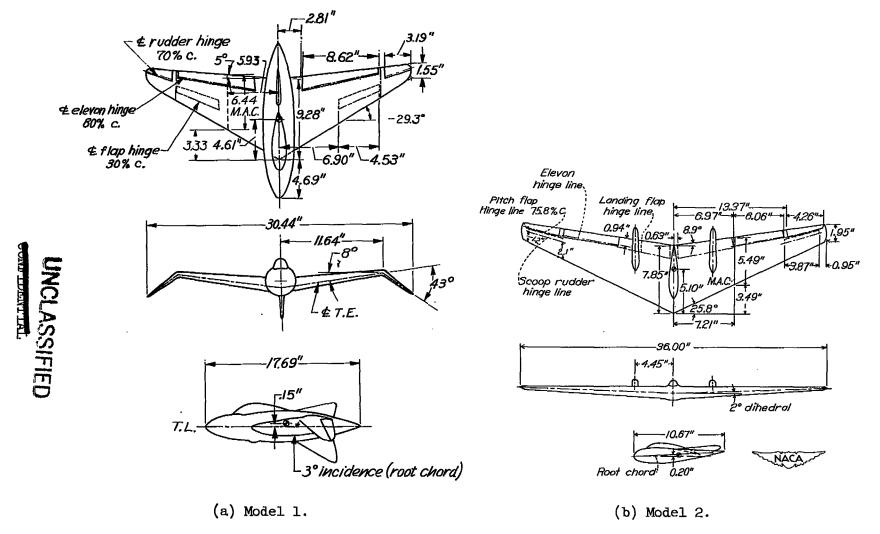


Figure 1.- Three-view drawings of models as tested.

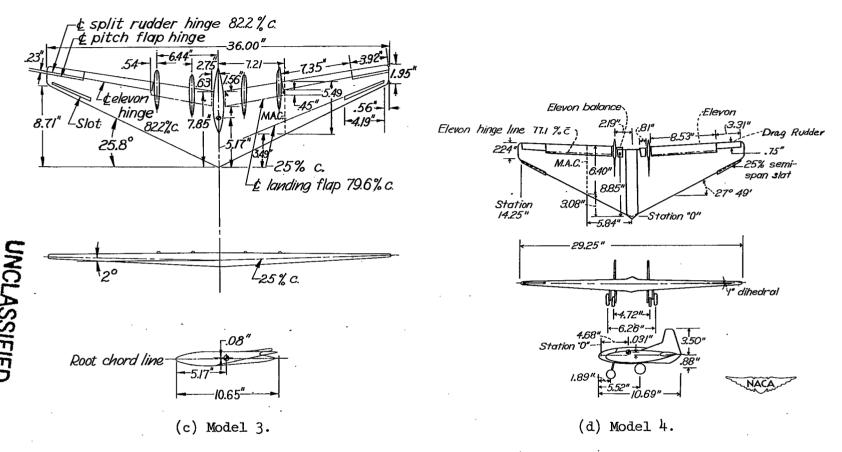


Figure 1.- Continued.

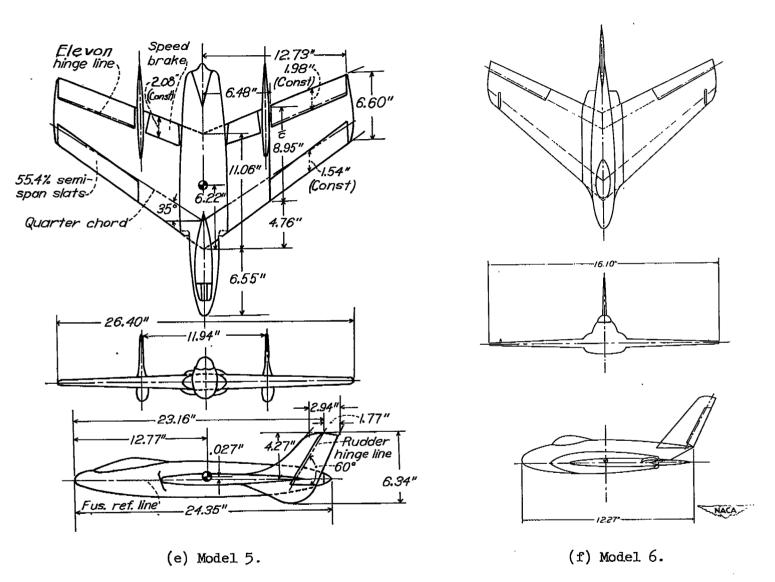


Figure 1.- Continued.

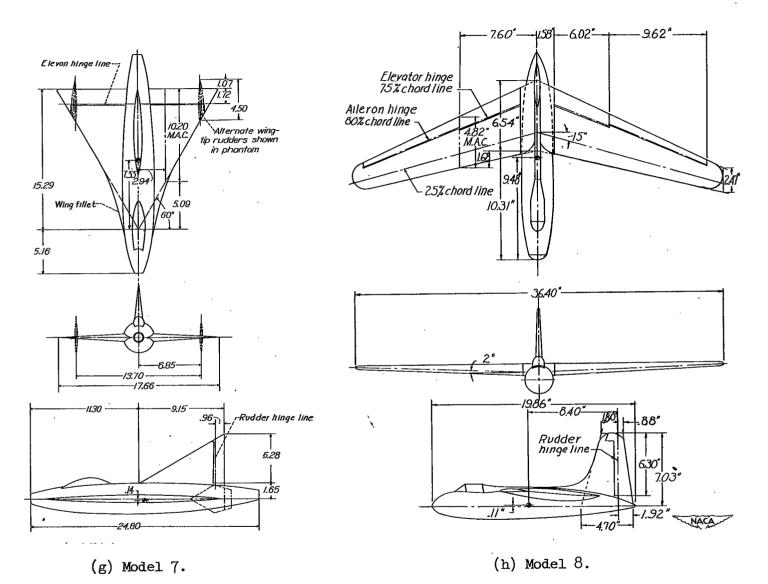


Figure 1.- Continued.

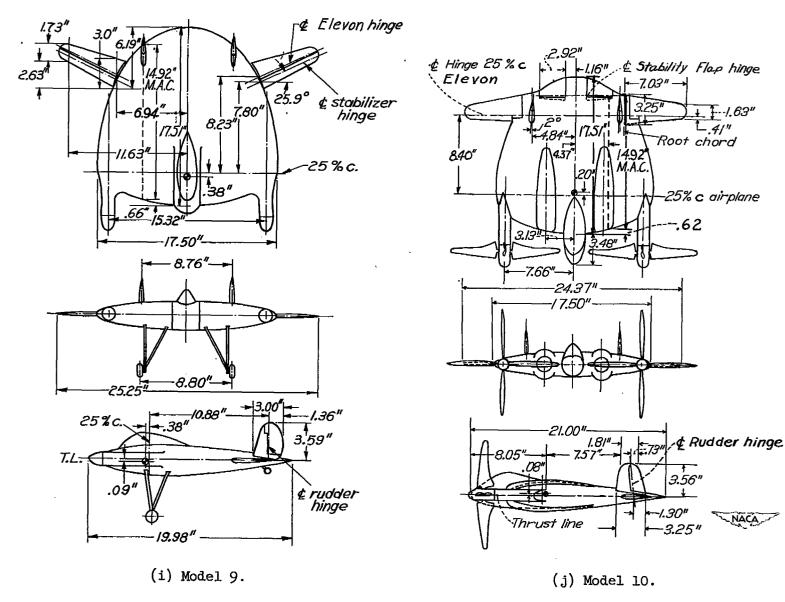


Figure 1.- Continued.

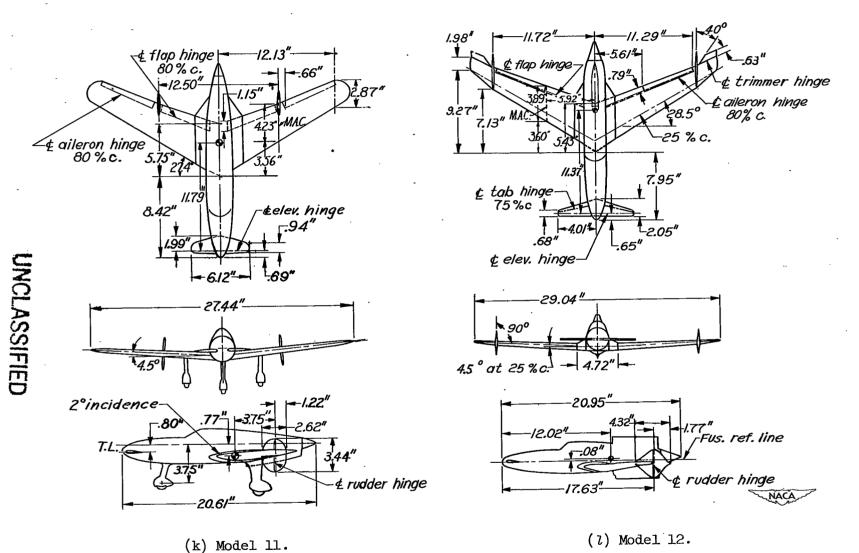


Figure 1.- Concluded.

				•
		,		
	,		,	:
				:
·				

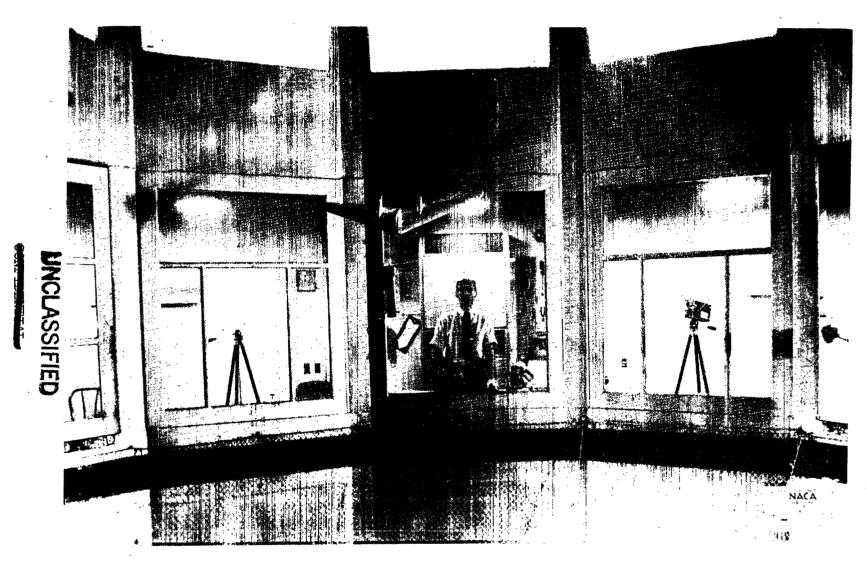


Figure 2.- Photograph of model 2 spinning in the Langley 20-foot free-spinning tunnel.

			*
			•
-			
			1
			•
			•
			•
		•	
•	1		
			*
			•

4

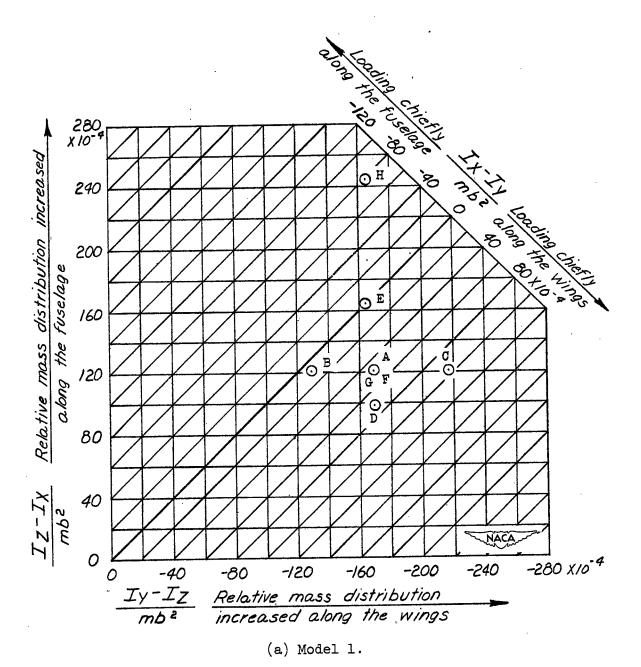
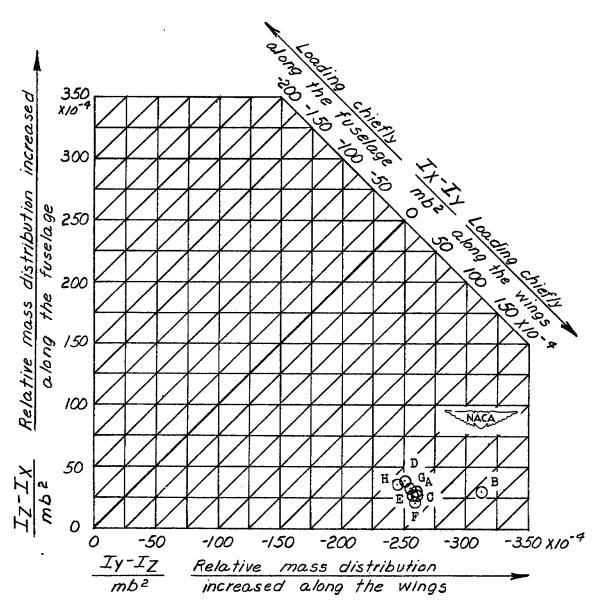
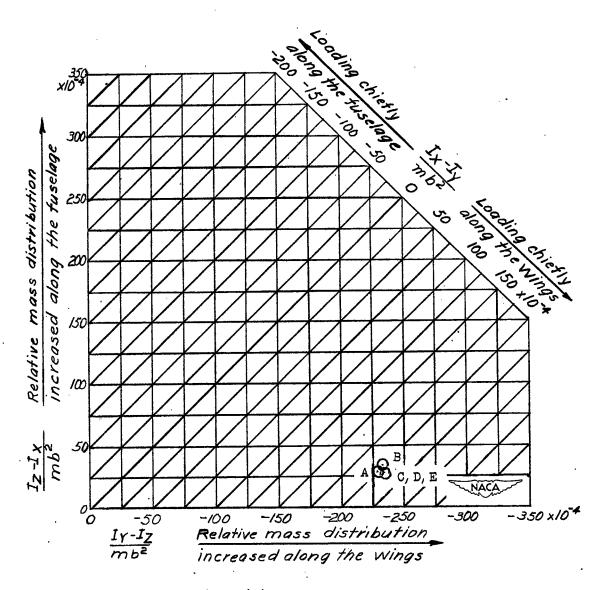
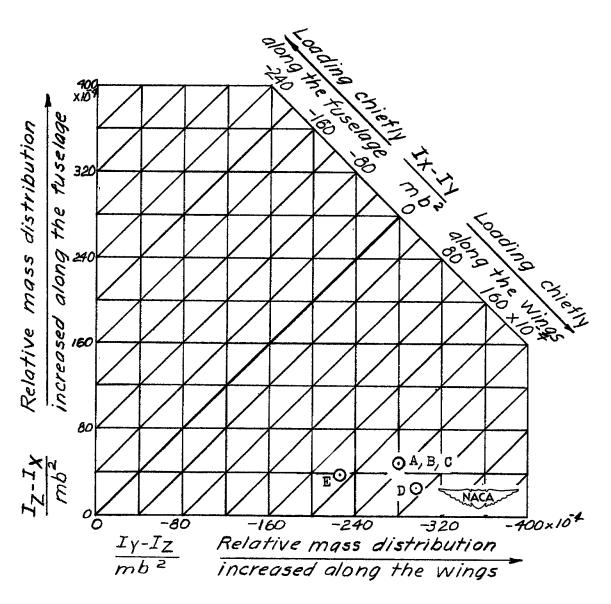



Figure 3.- Mass parameters for loadings tested on models. (Loadings found in table II.)

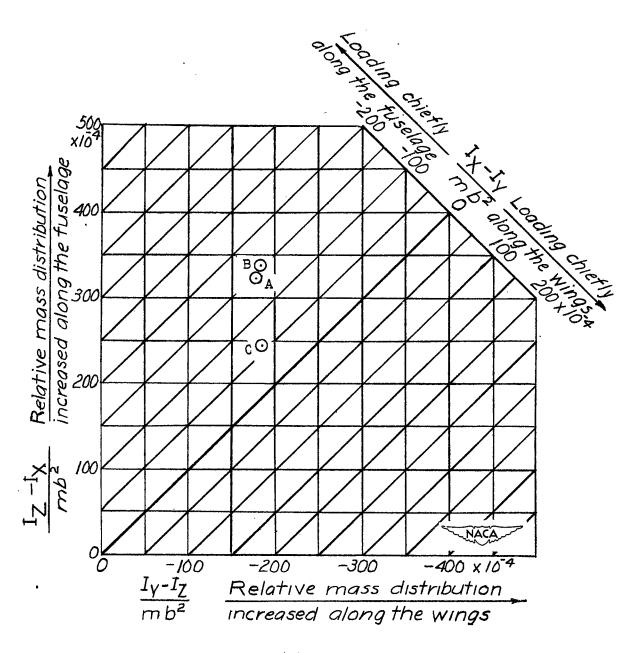


(b) Model 2.

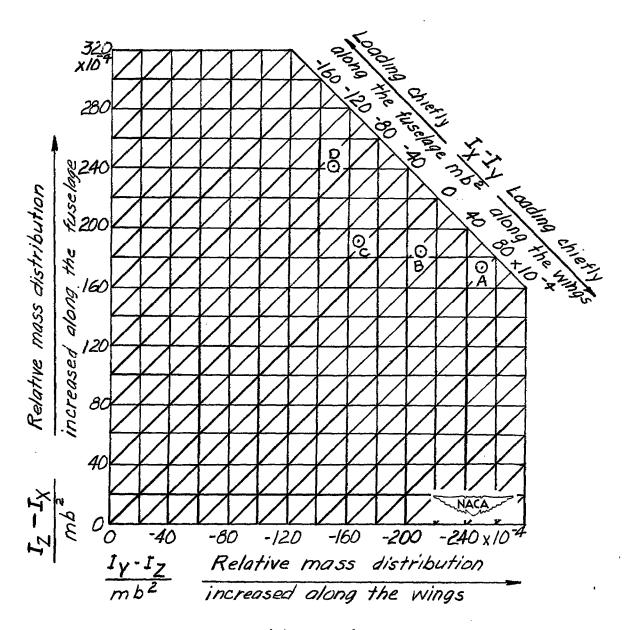
Figure 3.- Continued.


8

(c) Model 3.

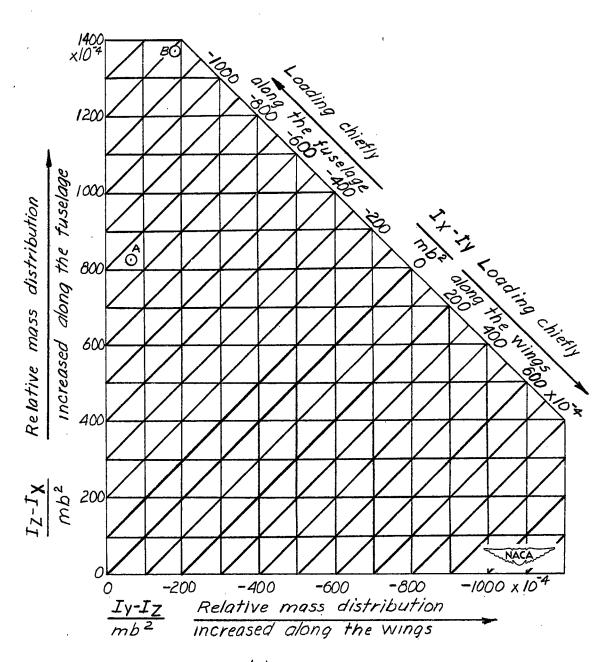

Figure 3.- Continued.

(d) Model 4.


Figure 3.- Continued.

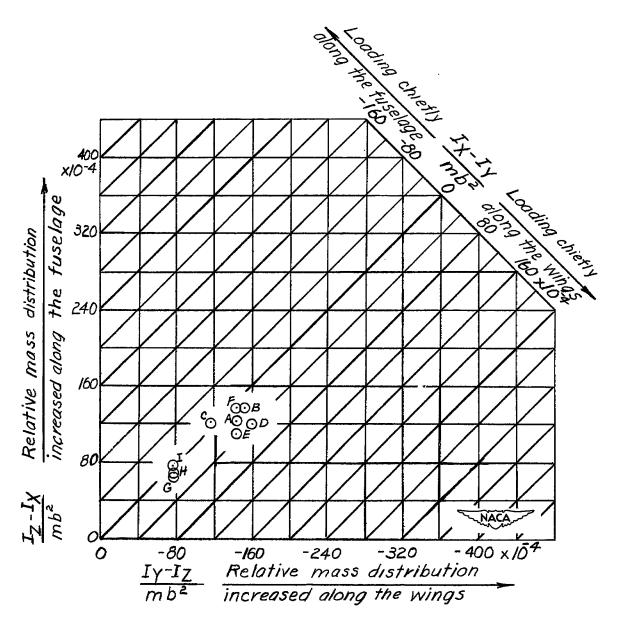
(e) Model 5.

Figure 3.- Continued.



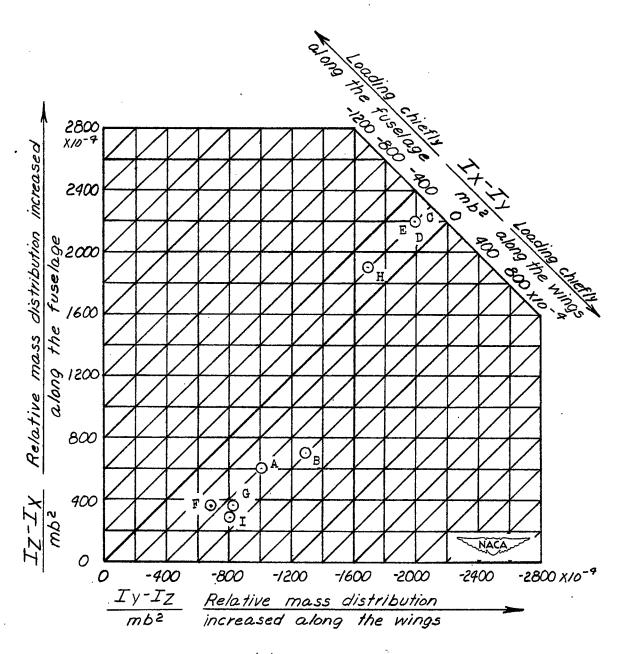
(f) Model 6.

Figure 3.- Continued.


UNCLASSIFIED -

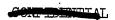
OOM IDENTIFY

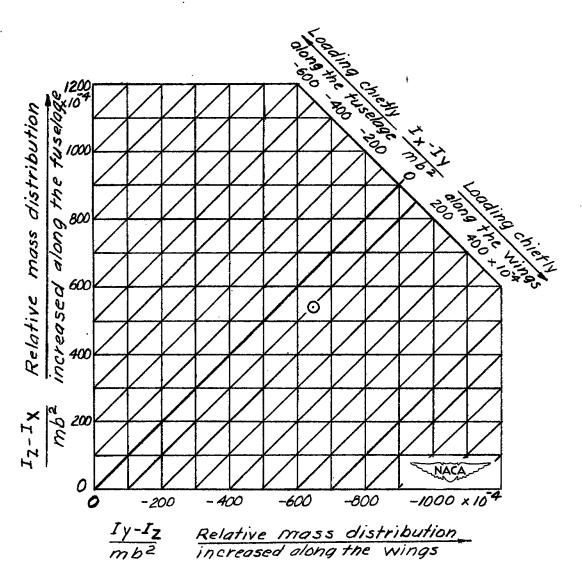
(g) Model 7.


Figure 3.- Continued.

(h) Model 8.

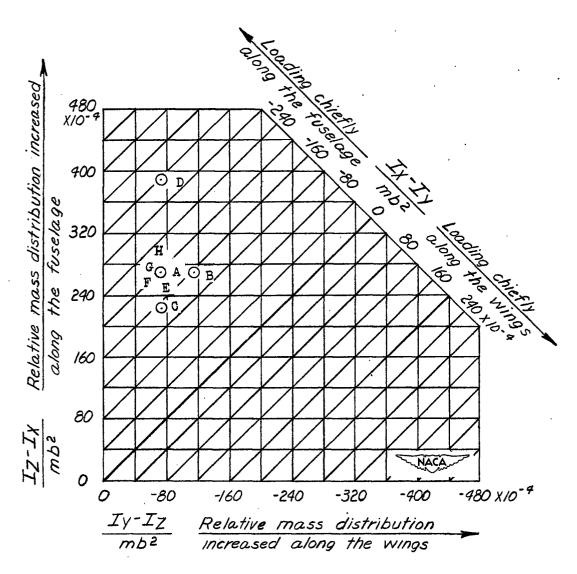
Figure 3.- Continued.





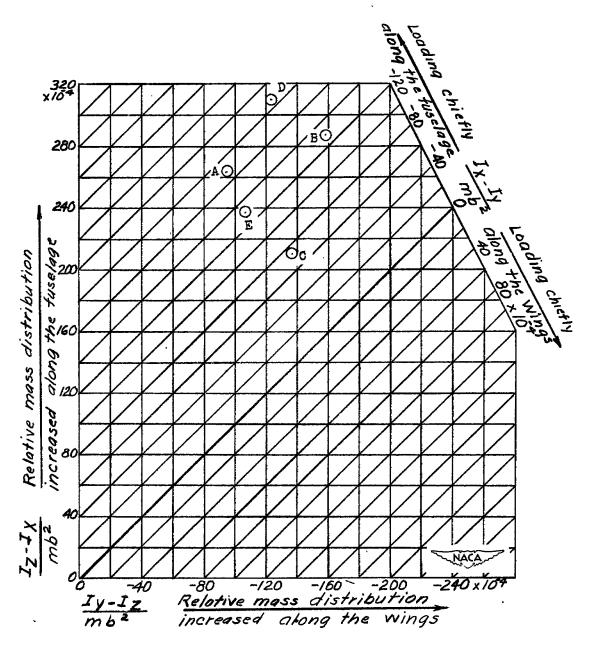
(i) Model 9.

Figure 3.- Continued.



(j) Model 10.

Figure 3. - Continued.


9

(k) Model 11.

Figure 3.- Continued.

(1) Model 12.

Figure 3.- Concluded.

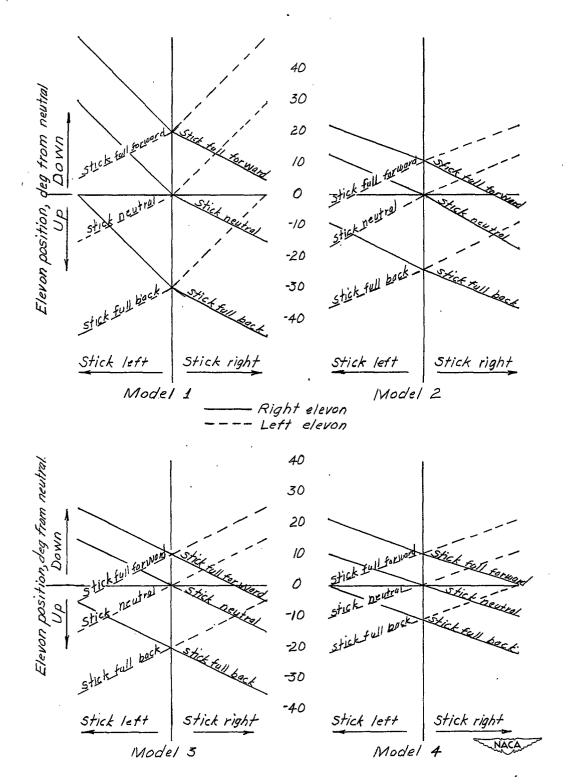


Figure 4. - Combination elevator-aileron (elevon) deflections for the models tested.

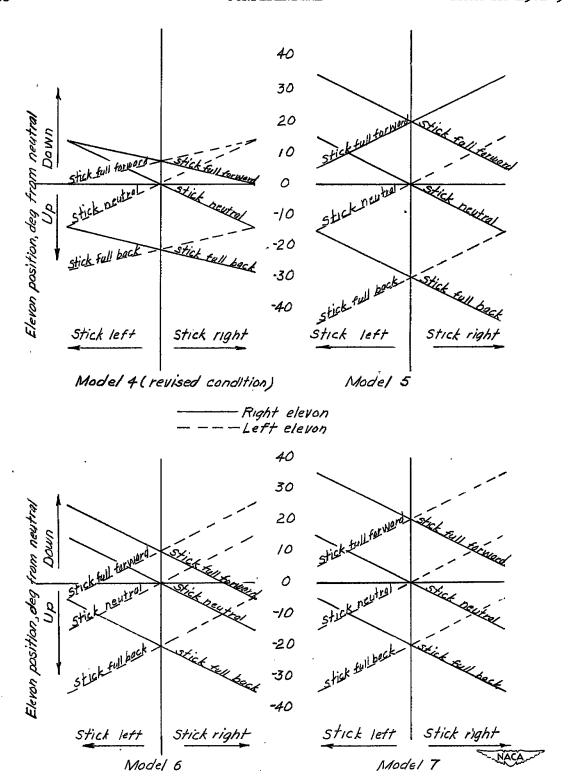


Figure 4.- Continued.

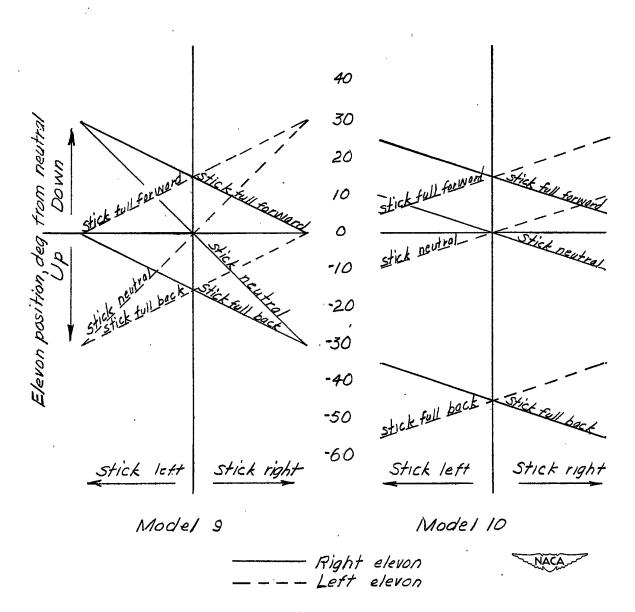
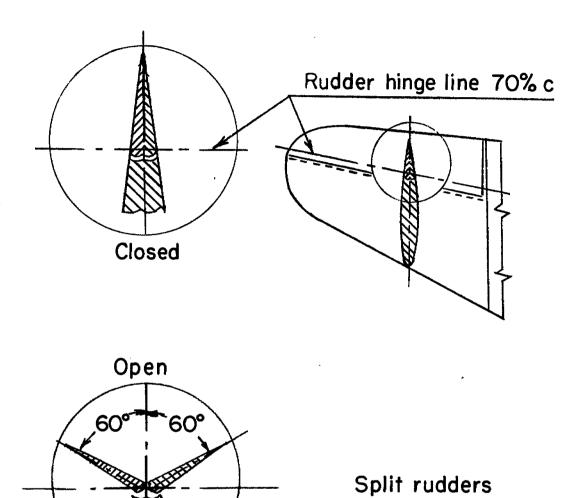
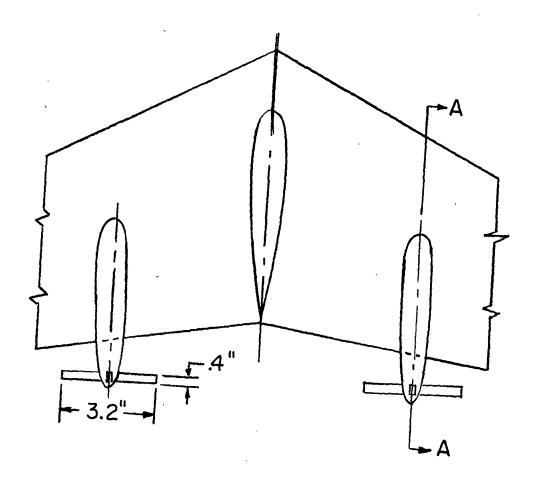
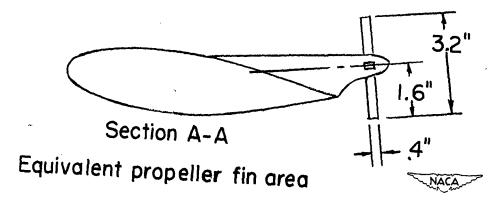



Figure 4.- Concluded.

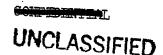
CONTRACTOR

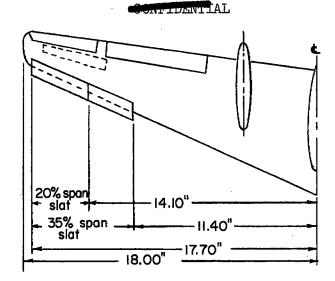


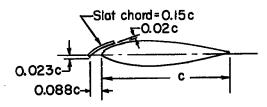

Typical section

(a) Model 1.

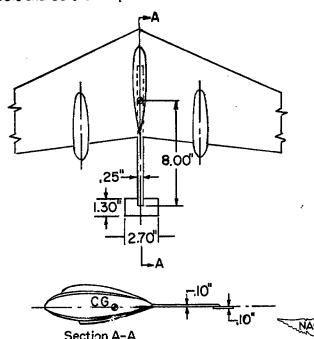
Figure 5.- Modifications tested on models.

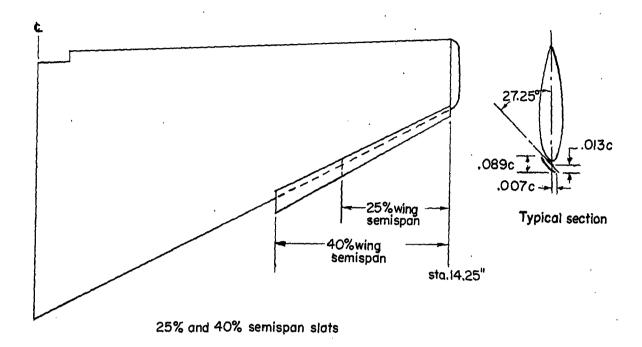


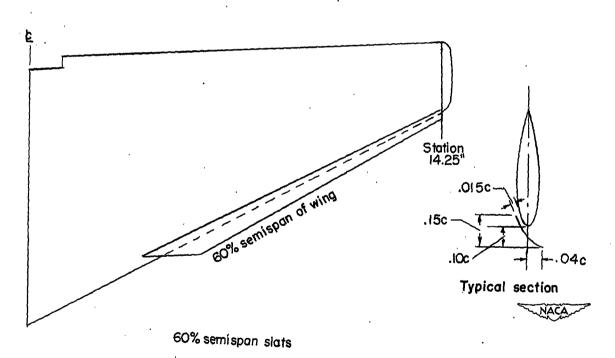




(b) Model 2.


Figure 5.- Continued.


20% and 35% semispan slats



Section A-A
Horizontal tail area

(b) Concluded.

Figure 5.- Continued.
UNCLASSIFIED

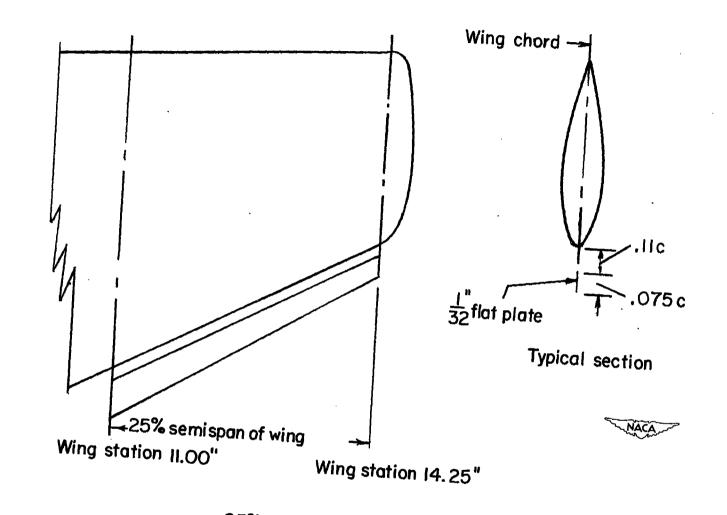
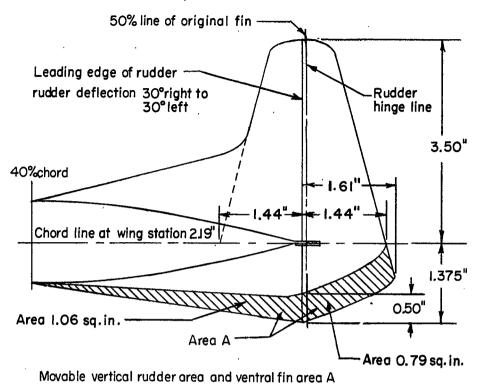

(c) Model 4.

Figure 5.- Continued.

UNCLASSIFIED

CONFIDENCE

۲,



25% semispan auxiliary airfoil slat

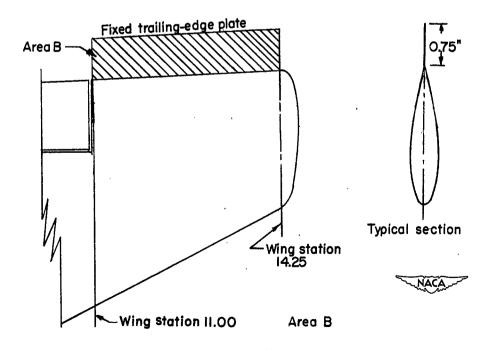
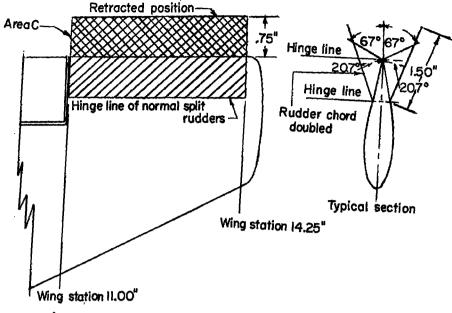

(c) Continued.

Figure 5.- Continued.


.

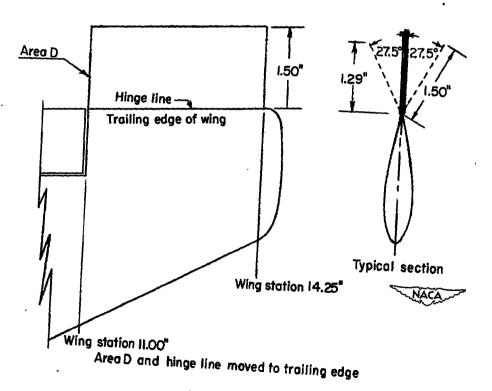
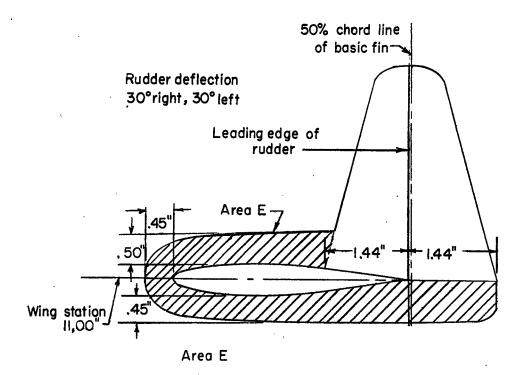
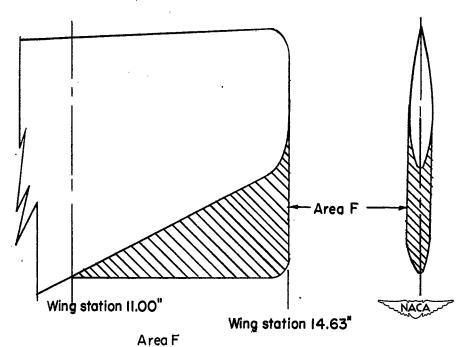

(c) Continued.

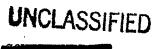
Figure 5.- Continued.

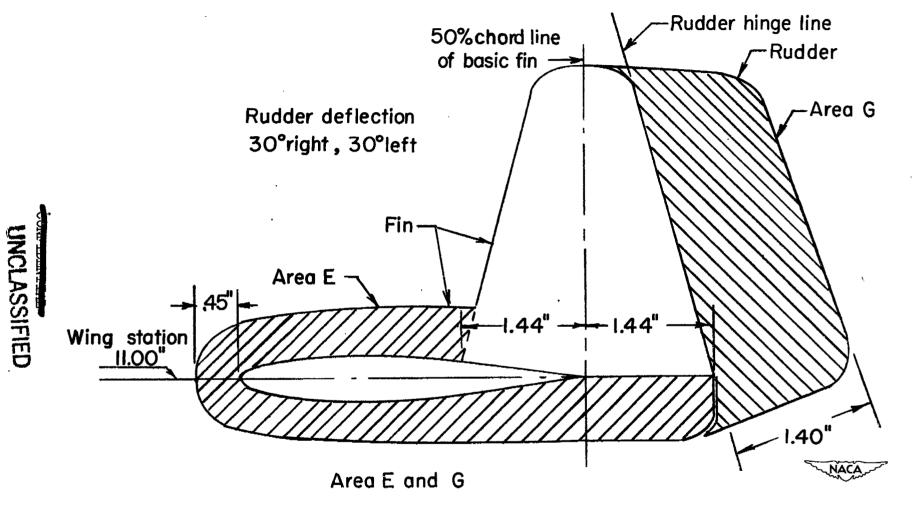
NACA RM L50L29



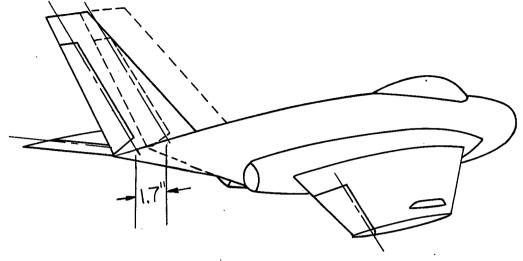

Area C and hinge line moved to trailing edge

(c) Continued.


Figure 5.- Continued.



(c) Continued.


Figure 5.- Continued.

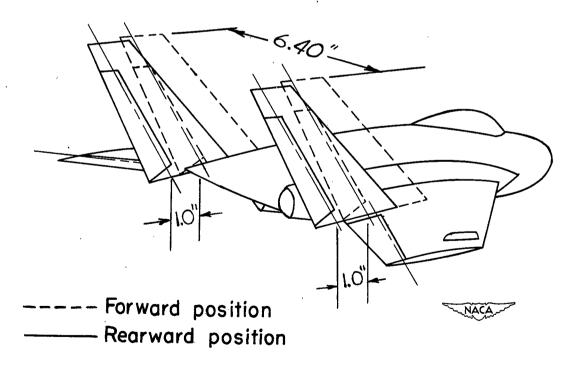
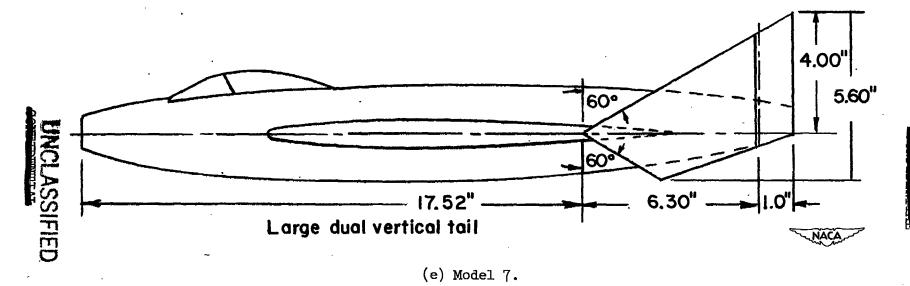

(c) Concluded.

Figure 5.- Continued.

---- Original position
----- Rearward position

Single vertical tail moved rearward



Dual vertical tails in forward and rearward positions

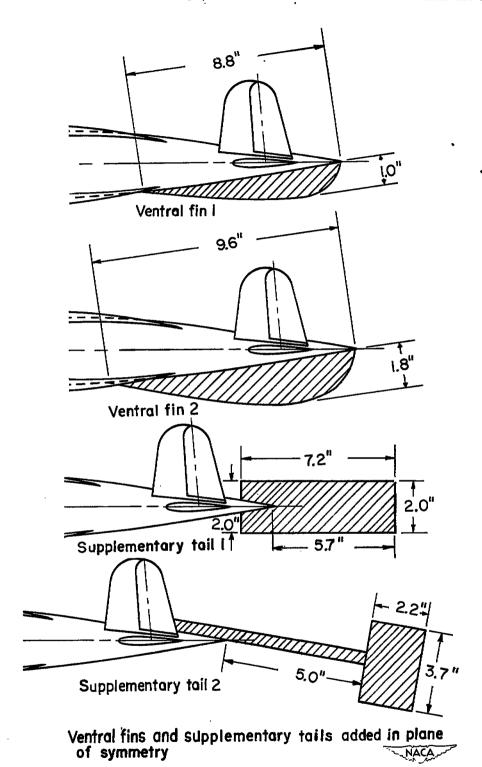
(d) Model 6.

Figure 5.- Continued.

. .

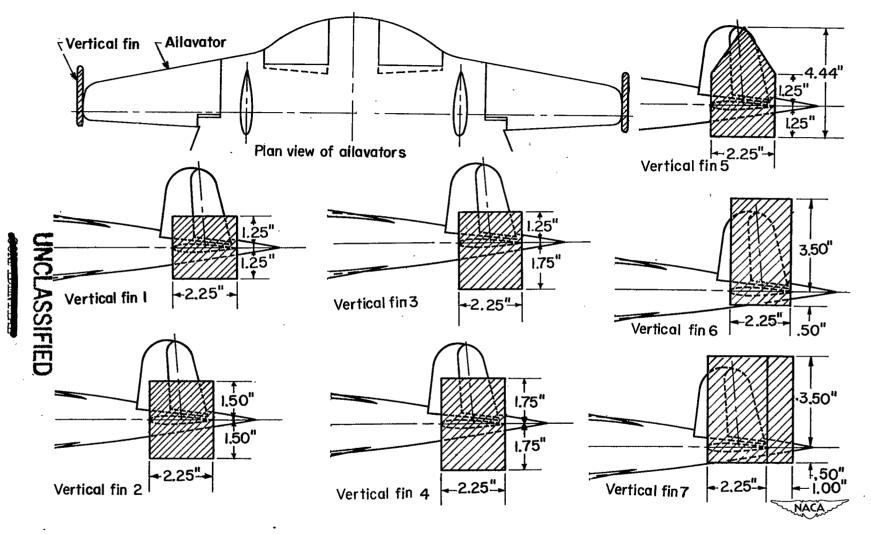
Figure 5.- Continued.

1.1


13.9% semispan spoilers 12.6" Horizontal tail Trailing edge of wing -2,41" -> Original vertical tail position Revised vertical tail position

Increased vertical tail length with horizontal tail added.

(f) Model 8.


Figure 5. - Continued.

Þ

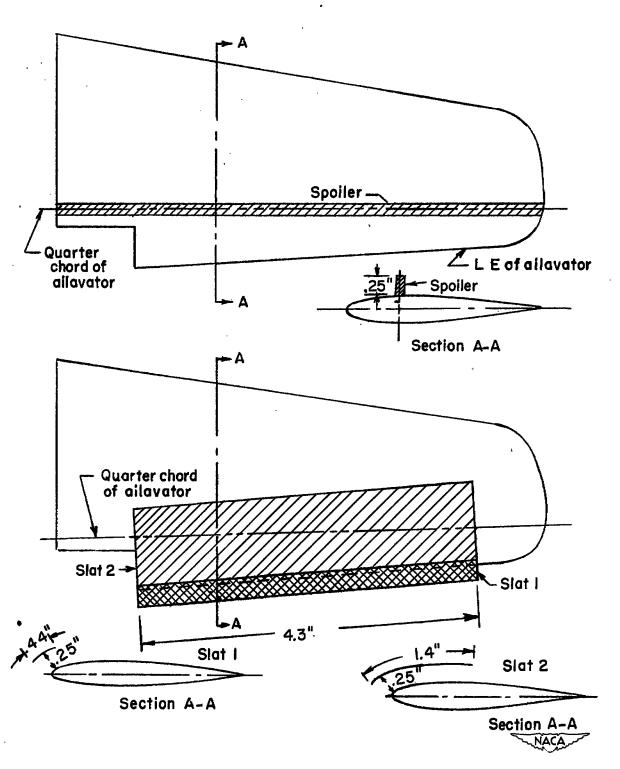
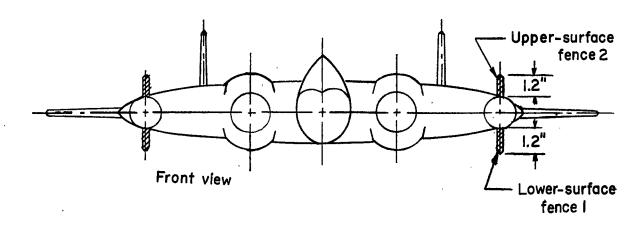
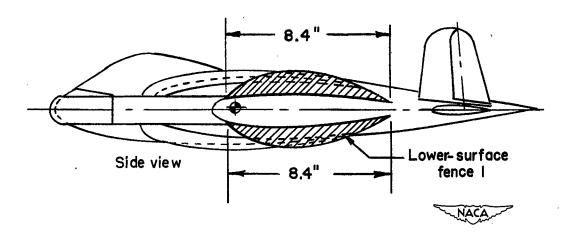

(g) Model 10.

Figure 5.- Continued.

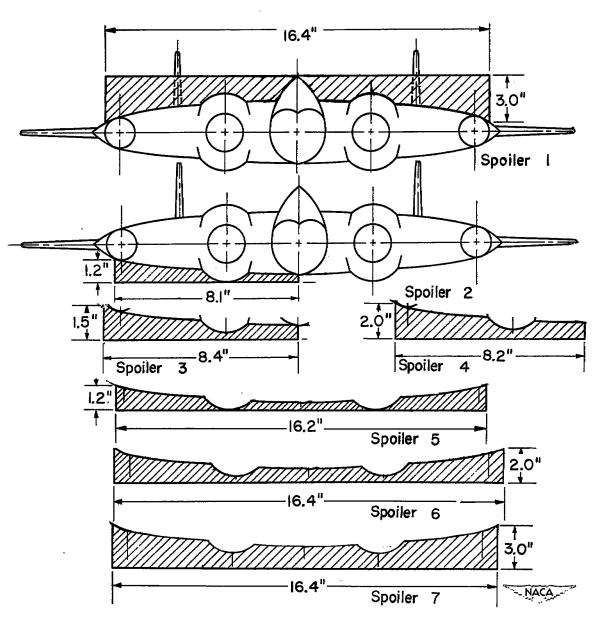
(g) Continued.


Figure 5.- Continued.

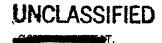


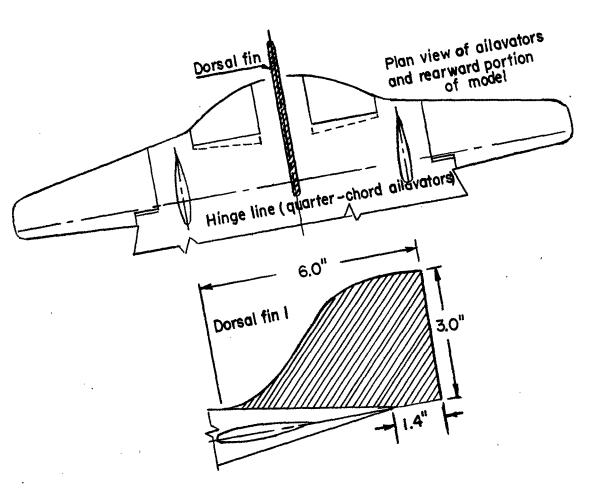
(g) Continued.

Figure 5.- Continued.



(g) Continued.


Figure 5. - Continued.


Spoilers added at c/4 line

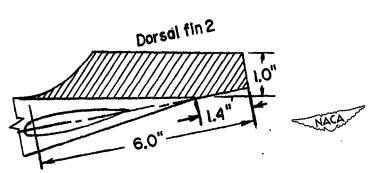
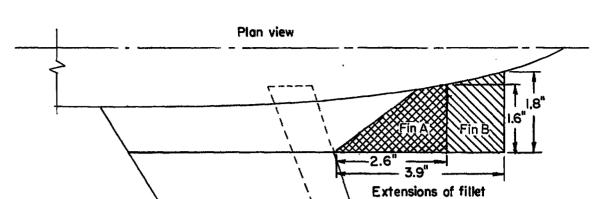
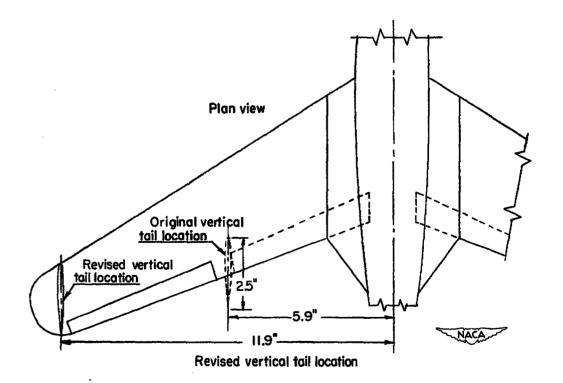

(g) Continued.

Figure 5.- Continued.

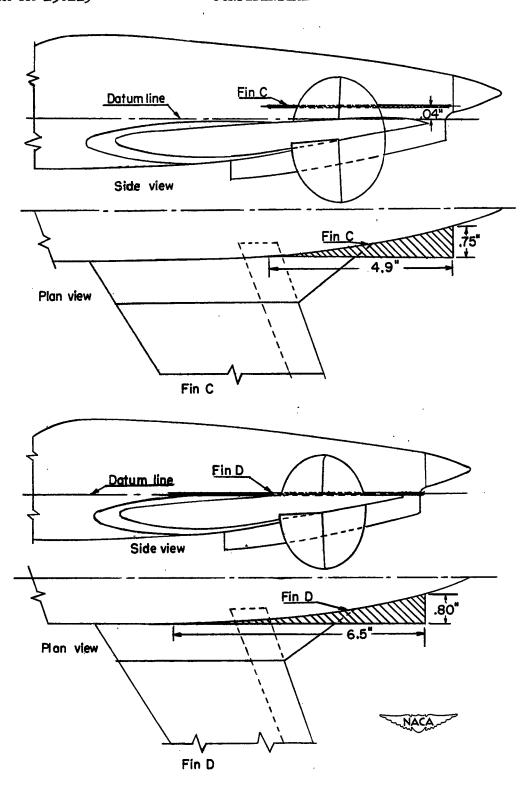

NACA RM L50L29



(g) Concluded.

Figure 5.- Continued.

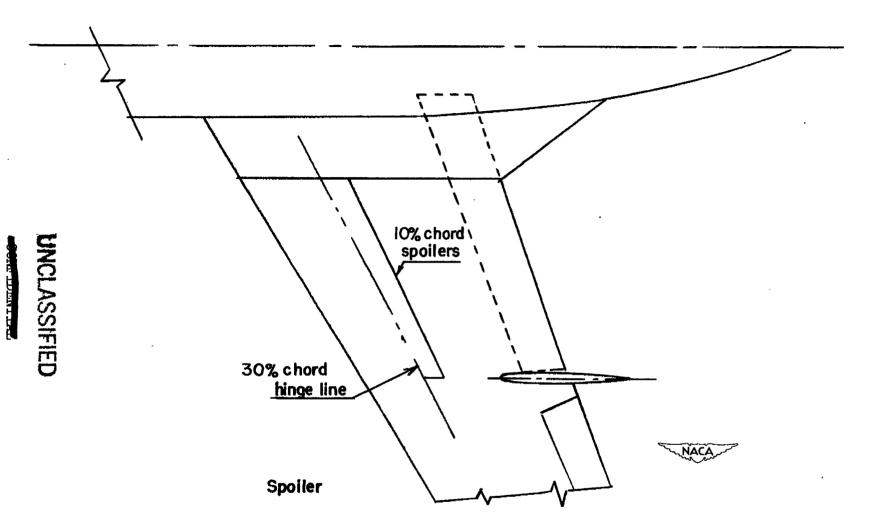
Fins A and B



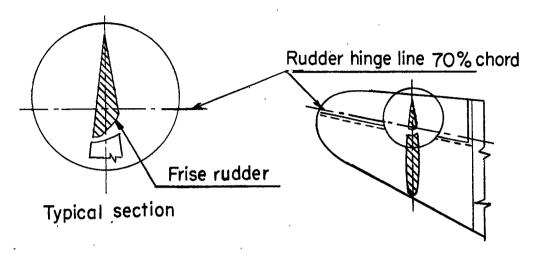
(h) Model 11.

Figure 5.- Continued.

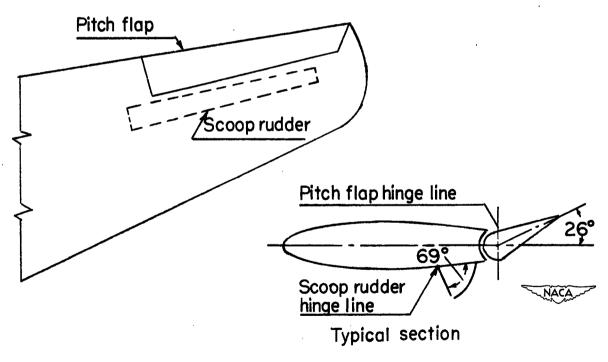
UNCLASSIFIED


TATITUTE

(h) Continued.


Figure 5.- Continued.

CONTRACTOR



(h) Concluded.

Figure 5.- Concluded.

(a) Rudder detail for model 1.

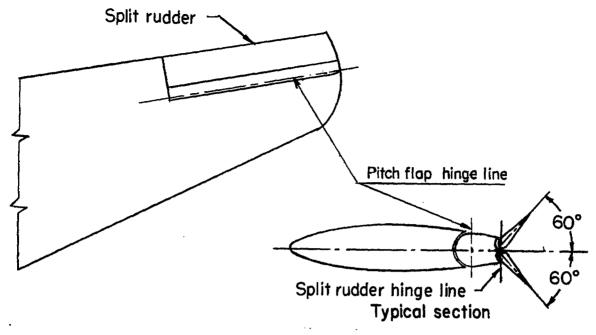
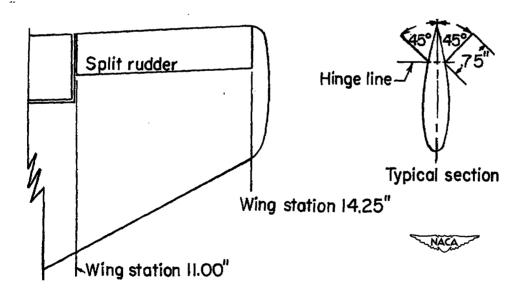
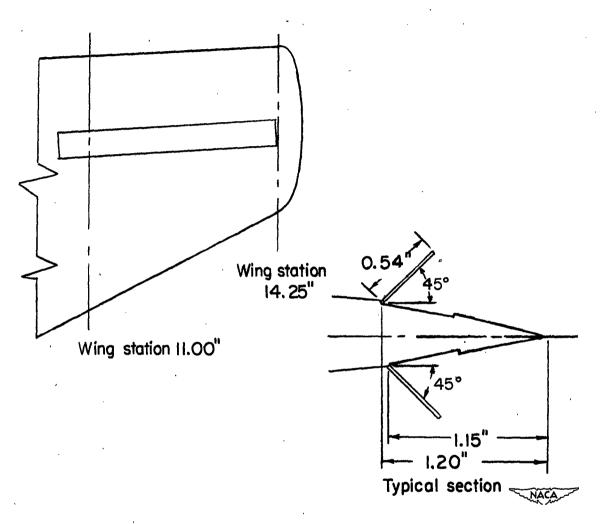

(b) Rudder detail for model 2.

Figure 6.- Details of drag-type rudders used on models 1 to 4.


UNCLASSIFIED

CONTRACTOR AT


(c) Rudder details for model 3.

(d) Rudder details for model 4; split-type rudders.

Figure 6.- Continued.

(e) Rudder detail for model 4; alternate circular-arc type rudder.

Figure 6.- Concluded.

4

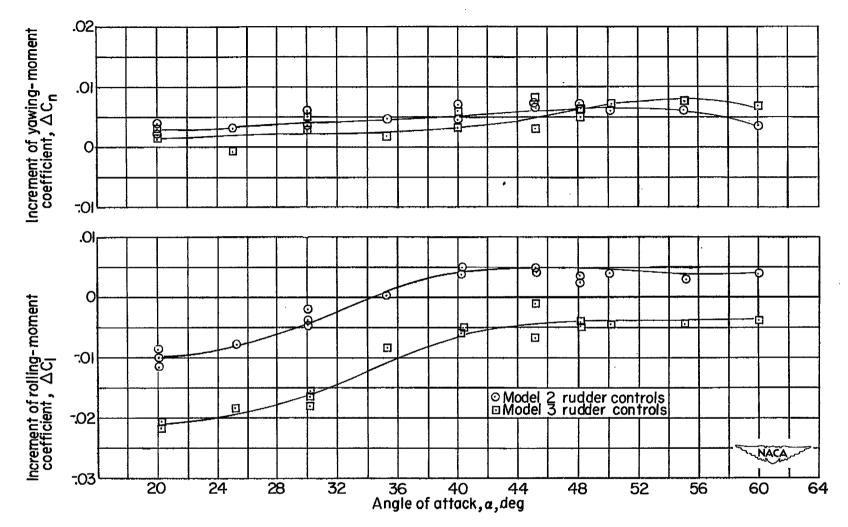


Figure 7.- Increments of yawing- and rolling-moment coefficients contributed by models 2 and 3 rudder controls as a function of angle of attack. Rudder controls on right wing tip fully deflected; rudder controls on left wing tip neutral; q = 4.274.

, -

3.4

4

.

...

•

•

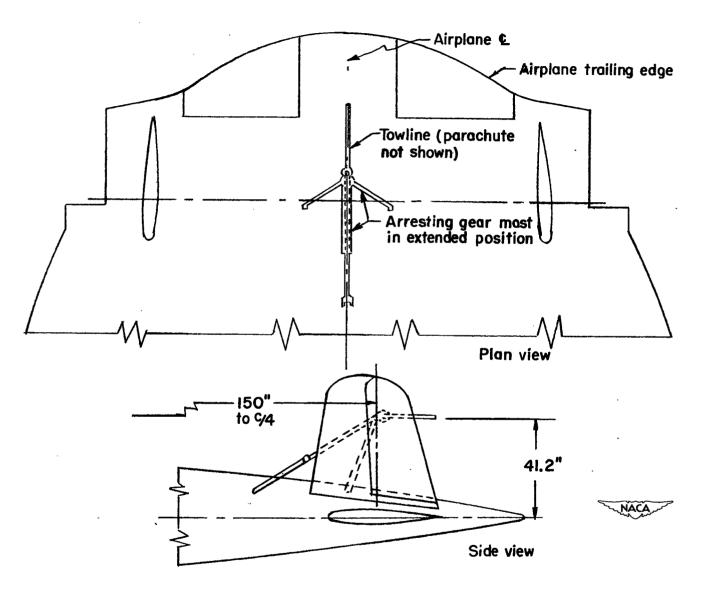


Figure 8.- Arresting gear mast for tail parachute attachment of model 10.